Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3253-3259.doi: 10.13229/j.cnki.jdxbgxb.20211399

Previous Articles     Next Articles

Fire risk intelligent perception early warning method based on big data technology

Wei-li ZHANG1,2(),Zhe YANG3,Xiao-hai SUN4,Ming LIU5(),Cheng-hao HAN6   

  1. 1.Network Information Center,Jilin Jianzhu University,Changchun 130119,China
    2.School of Modern Industry,Jilin Jianzhu University,Changchun 130119,China
    3.Legal and Social Fire Protection Offic,Jilin Fire Rescue Corps,Changchun 130031,China
    4.Big Data Institute,Yunnan Agricultural University,Kunming 650201,China
    5.School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China
    6.School of Emergency Science and Engineering,Jilin Jianzhu University,Changchun 130119,China
  • Received:2021-12-19 Online:2023-11-01 Published:2023-12-06
  • Contact: Ming LIU E-mail:zhangweili@jlju.edu.cn;liuming@ccut.edu.cn

Abstract:

In order to improve the effectiveness of fire risk warning, a fire risk intelligent perception warning method is proposed with the support of big data technology. Build a big data analysis platform and a fire risk intelligent perception early warning platform, and combine the two platforms to establish a fire risk early warning index system and early warning model. The fuzzy mathematics method is used to spread the single-valued samples to the fire risk points, output the warning signal vector, obtain the fire risk early warning signal, and realize the intelligent perception and early warning of the fire risk. The experimental results show that the false alarm rate of this method is low, and the false alarm rate is always lower than 6%. The actual fire occurrence times are consistent with the early warning times, which verifies its early warning effect.

Key words: computer application, big data technology, big data platform, intelligent perception early warning platform, fire risk, intelligent sensing early warning method, warning index system

CLC Number: 

  • TP391

Fig.1

Big data analysis platform architecture"

Table 1

Fire risk early warning indicator system"

警源警兆因子警兆
每日平均风速/(m·s-1发生火灾的可能性(Pm/t)内在警兆(P)
每日平均湿度/%发生火灾的可能性(Pm/t)内在警兆(P)
每日降水量/mm发生火灾的可能性(Pm/t)内在警兆(P)
每日最高气温/℃发生火灾的可能性(Pm/t)内在警兆(P)
人口密度/(人·km-2人口因子(Po)外生警兆(Dg)
脆弱人口/人人口因子(Po)外生警兆(Dg)
防火人员数量/人防灾能力因子(R)外生警兆(Dg)
防火物资/万元防灾能力因子(R)外生警兆(Dg)
公路网密度/km2防灾能力因子(R)外生警兆(Dg)
水体面积/km2防灾能力因子(R)外生警兆(Dg)

Fig.2

Comparison of different methods and actual warning times"

Fig.3

Testing the misreporting rate of three fire risk warning methods"

Fig.4

Three methods of fire risk false positive rate testing"

Table 2

Probability of fire occurring before and after fire risk warning"

迭代次数火灾发生概率/%
预警前预警后
104019
204921
306023
406323
507127
607629
708533
808836
909237
1009741

Fig.5

Fire risk warning response time of three methods"

1 张雷, 黄晓家, 谢水波, 等. 基于贝叶斯网络的酒店火灾概率评估[J]. 消防科学与技术, 2020, 39(7): 916-919.
Zhang Lei, Huang Xiao-jia, Xie Shui-bo, et al. Hotel fire probability evaluation based on Bayesian network[J]. Fire Science and Technology, 2020, 39(7): 916-919.
2 黄宝华. 可燃物干燥指数在草地火险预警中的应用[J]. 国土资源遥感, 2019, 31(2): 187-195.
Huang Bao-hua. Application of fuel dry index in the prairie fire danger[J]. Remote Sensing For Land & Resources, 2019, 31(2): 187-195.
3 魏立明, 郭兴, 王秋翠, 等. 基于Apriori算法综合管廊火灾识别预警系统[J]. 消防科学与技术, 2020, 39(4): 497-500.
Wei Li-ming, Guo Xing, Wang Qiu-cui, et al. Fire danger identification and early warning system for urban underground comprehensive pipe gallery based on Apriori algorithm[J]. Fire Science and Technology, 2020, 39(4): 497-500.
4 谢筱依, 董雷, 董志勇, 等. 基于大数据技术的消防火灾风险分析体系[J]. 今日消防, 2020, 5(1): 106-108.
Xie Xiao-yi, Dong Lei, Dong Zhi-yong, et al. Fire risk analysis system based on big data technology[J]. Fire Protection Today, 2020, 5(1): 106-108.
5 任常兴, 李晋, 张网, 等. 涉冬奥会场馆外工业场所火灾风险预警指标[J]. 消防科学与技术, 2020, 39(2): 270-274.
Ren Chang-xing, Li Jin, Zhang Wang, et al. Fire risk alarming index of industrial buildings outside of winter Olympic venues[J]. Fire Science and Technology, 2020, 39(2): 270-274.
6 陈尚, 蒋毅, 宋珍. 电力电缆火灾风险评价模型与预警信号分级[J]. 南方电网技术, 2020, 14(4): 3-7.
Chen Shang, Jiang Yi, Song Zhen. Fire risk assessment model and early warning signal classification of power cable[J]. Southern Power System Technology, 2020, 14(4): 3-7.
7 葛明臣, 刘大同. 基于BP神经网络的井下电弧火灾预警研究[J]. 煤炭技术, 2020, 39(9): 195-198.
Ge Ming-chen, Liu Da-tong. Study on downhole arc fire warning based on BP neural network[J]. Coal Technology, 2020, 39(9): 195-198.
8 李晓会, 陈潮阳, 伊华伟, 等. 基于云计算和大数据分析的大规模网络流量预测[J]. 吉林大学学报: 工学版, 2021, 51(3): 1034-1039.
Li Xiao-hui, Chen Chao-yang, Yi Hua-wei, et al. Large scale network traffic prediction based on cloud computing and big data analysis[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1034-1039.
9 张笑东, 夏筱筠, 吕海峰, 等. 大数据网络并行计算环境中生理数据流动态负载均衡[J]. 吉林大学学报: 工学版, 2020, 50(1): 247-254.
Zhang Xiao-dong, Xia Xiao-yun, Lv Hai-feng, et al. Dynamic load balancing of physiological data flow in big data network parallel computing environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 247-254.
10 钟卓颖, 宋景慧. 乡村智能电网大数据分析平台总体构架与应用[J]. 电测与仪表, 2020, 57(9): 87-93.
Zhong Zhuo-ying, Song Jing-hui. Overall architecture and application of big data analysis platform for rural smart grid[J]. Electrical Measurement & Instrumentation, 2020, 57(9): 87-93.
11 崔晓龙, 郭茜, 边胜琴, 等. 支持模型复用的通用大数据分析平台[J]. 实验室研究与探索, 2020, 39(7): 64-70.
Cui Xiao-long, Guo Xi, Bian Sheng-qin, et al. General big data analysis platform for supporting model reuse[J]. Research and Exploration in Laboratory, 2020, 39(7): 64-70.
12 崔英杰. 云雾网络架构的大数据分析平台研究[J].电子设计工程, 2020, 28(5): 98-102.
Cui Ying-jie. Research on big data analysis platform of yunwu network architecture[J]. Electronic Design Engineering, 2020, 28(5): 98-102.
13 张伟利, 杨喆, 孙晓海, 等. 基于Bayes估计的受限空间探测数据融合算法[J]. 吉林大学学报: 理学版, 2023, 61(3): 658-664.
Zhang Wei-li, Yang Zhe, Sun Xiao-hai, et al. Data fusion algorithm for confined space detection based on Bayesian estimation[J]. Journal of Jilin University (Science Edition), 2023, 61(3): 658-664.
14 申建建, 曹瑞, 苏承国, 等. 水火风光多源发电调度系统大数据平台架构及关键技术[J]. 中国电机工程学报, 2019, 39(1): 43-55.
Shen Jian-jian, Cao Rui, Su Cheng-guo, et al. Big data platform architecture and key techniques of power generation scheduling for hydro-thermal-wind-solar hybrid system[J]. Proceedings of the CSEE, 2019, 39(1): 43-55.
15 尹旭熙. 基于Hadoop和Spark的可扩展性化工类大数据分析系统设计[J]. 粘接, 2021, 46(6): 81-83, 93.
Yin Xu-xi. Design of scalable chemical industry big data analysis system based on Hadoop and Spark[J]. Adhesion, 2021, 46(6): 81-83, 93.
16 刘一哲, 冯文兰, 扎西央宗, 等. 基于MODIS TVDI和模糊数学方法的藏北地区旱情等级遥感监测[J]. 干旱区研究, 2020, 37(1): 86-96.
Liu Yi-zhe, Feng Wen-lan, Yang-zong Zha-xi, et al. Remote sensing monitoring of drought level in north Tibet based on MODIS TVDI and fuzzy mathematics[J]. Arid Zone Research, 2020, 37(1): 86-96.
17 王学林, 黄琴琴, 柳军. 基于信息扩散理论的南方双季早稻气象灾害风险评估[J]. 中国农业气象, 2019, 40(11): 712-722.
Wang Xue-lin, Huang Qin-qin, Liu Jun. Risk assessment for meteorological disasters of early rice in the southern double- season region based on information diffusion theory[J]. Chinese Journal of Agrometeorology, 2019, 40(11): 712-722.
18 姚志洪, 王逸, 杨涛, 等. 行程时间服从截断正态分布的动态车队离散模型[J]. 吉林大学学报: 工学版, 2020, 50(6): 2094-2100.
Yao Zhi-hong, Wang Yi, Yang Tao, et al. Dynamic platoon dispersion model based on truncated normal distribution of travel time[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2094-2100.
19 张坤勇, 陈恕, 王耀. 盾构地表沉降的数值分析及归一化模型建立[J]. 地下空间与工程学报, 2019, 114(3): 209-216.
Zhang Kun-yong, Chen Shu, Wang Yao. Numerical simulation and normalized model of surface settlement induced by shield tunneling excavation[J]. Chinese Journal of Underground Space and Engineering, 2019, 114(3): 209-216.
[1] Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600.
[2] Ying HE,Zhuo-ran WANG,Xu ZHOU,Yan-heng LIU. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2632-2639.
[3] Yun-zuo ZHANG,Xu DONG,Zhao-quan CAI. Multi view gait cycle detection by fitting geometric features of lower limbs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2611-2619.
[4] Ming-yao XIAO,Xiong-fei LI,Rui ZHU. Medical image fusion based on pixel correlation analysis in NSST domain [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2640-2648.
[5] Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379.
[6] Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387.
[7] Lian-ming WANG,Xin WU. Method for 3D motion parameter measurement based on pose estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2099-2108.
[8] Ze-qiang ZHANG,Wei LIANG,Meng-ke XIE,Hong-bin ZHENG. Elite differential evolution algorithm for mixed⁃model two⁃side disassembly line balancing problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1297-1304.
[9] Yang LIU,Ji-cheng LIU. Collaborative optimization scheduling method of clean energy based on big data and particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1443-1448.
[10] Zhen-hai ZHANG,Kun JI,Jian-wu DANG. Crack identification method for bridge based on BCEM model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426.
[11] Pei-yong LIU,Jie DONG,Luo-feng XIE,Yang-yang ZHU,Guo-fu YIN. Surface defect detection algorithm of magnetic tiles based on multi⁃branch convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1449-1457.
[12] Yu JIANG,Jia-zheng PAN,He-huai CHEN,Ling-zhi FU,Hong QI. Segmentation-based detector for traditional Chinese newspaper [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1146-1154.
[13] Peng YU,Yan PIAO. New method for extracting person re-identification attributes based on multi-scale features [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1155-1162.
[14] Hong-yang PAN,Zhao LIU,Bo YANG,Geng SUN,Yan-heng LIU. Overview of swarm intelligence methods for unmanned aerial vehicle systems based on new⁃generation information technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 629-642.
[15] Ying HE,Jun-song FAN,Wei WANG,Geng SUN,Yan-heng LIU. Joint optimization of secure communication and trajectory planning in unmanned aerial vehicle air⁃to⁃ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 913-922.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .