Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (10): 2982-2993.doi: 10.13229/j.cnki.jdxbgxb.20211364

Previous Articles     Next Articles

Optimization design of broadband and low noise receiving for helicopterborne electromagnetic method with pseudorandom coded waveforms

Yan-zhang WANG1,2(),Ming LIU1,2,Jia-lin ZHANG1,2,Kai-guang ZHU1,2,Shou-peng DENG1,2,Shi-long WANG1,2()   

  1. 1.Key Laboratory of Geo-exploration Instruments,Ministry of Education of China,Changchun 130061,China
    2.College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130061,China
  • Received:2021-12-14 Online:2023-10-01 Published:2023-12-13
  • Contact: Shi-long WANG E-mail:yanzhang@jlu.edu.cn;was1100@163.com

Abstract:

In this paper, aiming at the pseudo-random transmitting current of 200 kHz clock frequency, comprehensively considering factors such as sensitivity, signal-to-noise ratio, the resonant frequency of the air-core coil sensor is increased to above 150 kHz when the noise level is as low as 4.86 nT/s; The receiver is based on the PXIe bus, which can realize the acquisition of three-component electromagnetic data, transmitting current and various auxiliary information. The sampling rate can reach up to 1.25 MHz, and the dynamic range is 112.6 dB. Through the integration of multi-channel signals, improved multi-information single-file storage method and data storage protocols through composite time stamping, reliable multi-information storage under massive data is realized. Compared with the CHTEM-Ⅱ airborne electromagnetic recording system, the throughput is up to 6 times. The test results of various performance indicators prove that the receiving system has a high degree of completion.

Key words: measuring and testing technologies and instruments, helicopter-borne electromagnetic method, m-sequence, broadband low-noise air-core coil sensor, high sampling rate receiver

CLC Number: 

  • TH763

Fig.1

Principles of helicopter-borne electromagnetic method"

Fig.2

Transmitting waveform and frequency spectrum"

Fig.3

Schematic diagram of the receiving system"

Fig.4

Photo of the receiving system"

Fig.5

Differential air-core coil"

Fig.6

Electric equivalent model of air-core coil"

Fig.7

Amplitude-frequency characteristics of air-core coil and m-sequence"

Fig.8

Influence of coil diameter and number of turnson sensitivity"

Fig.9

Influence of coil diameter and number of turnson signal-to-noise ratio"

Fig.10

Contour map of sensitivity and SNR"

Fig.11

Noise model of air-core coil sensor"

Fig.12

Sensor noise curve"

Table 1

Parameters of air-core coil sensor"

参数符号参数值
线圈段数s4
总匝数n40
平均直径D515.5 mm
导线直径d1.5 mm
绕线电阻率ρr1.86×10-8?Ω?m
线槽宽度e6 mm
线圈内阻r2.135 Ω
线圈电感L1.24 mH
分布电容C850 pF
增益G641
放大器U1,U2,U3AD797B,AD797B,THS4131
电阻R1RgR3R5Rt1220 Ω,10 Ω,330 Ω,4.7 kΩ,1 kΩ

Fig.13

Receiver hardware block diagram"

Table 2

Receiver index"

指标
采样率1.25 MHz
分辨率24位
通道数6
量程±10 V
动态范围≥110 dB

Fig.14

Block diagram of data recording software"

Fig.15

Data flow timing relationship"

Table 3

Bandwidth or write rate of data transmissionlinks"

环节带宽或写入速率备注
PXI总线132 MB/s并行
PXIe总线2.5 Gb/s串行每通道
内存2400 MT/sDDR4 2133 MHz
USB 3.05.0 Gb/s/
SATA 3.06 Gb/s/
外置硬盘盒520 MB/s主控芯片ASM
SATA机械硬盘100~150 MB/s5 400 r/min
SATA固态硬盘≥450 MB/sTLC

Table 4

Data storage format test using hard disk drive"

数据类型存盘间隔/s报错时已运行时间
DBL10:13:45
DBL20:44:38
I3213:33:22
I3223:37:31
I320.251:57:49
I320.52:21:34
U3222:06:15
U820:00:24

Table 5

Solid state disk storage experiment"

品牌型号写入速度/(MB·s-1可靠工作时长/h
金士顿 UV500500>8
金士顿 A400S37450>8
云存 GDS25480>8
三星 870EVO530>8

Fig.16

Amplitude-frequency characteristics of ACSs"

Fig.17

Noise test of the amplifier circuit"

Fig.18

Comparison of measured noise and theoreticalnoise"

Fig.19

Receiver test"

Table 6

Agilent 33522B parameter settings"

参数
码元频率99 949 Hz
阶数7
边沿时间4.0 ns

Fig.20

Outdoor experimental scene"

Fig.21

Frequency domain phase profile curve"

1 Liu G. Effect of transmitter current waveform on airborne TEM response[J]. Exploration Geophysics, 1998, 29: 35-41
2 陈曙东, 林君, 张爽. 发射电流波形对瞬变电磁响应的影响[J]. 地球物理学报, 2012, 55(2): 709-716.
Chen Shu-dong, Lin Jun, Zhang Shuang. Effect of transmitter current waveform on TEM response[J], Chinese J Geophys,2012, 55(2): 709-716.
3 Ziolkowski A, Wright D, Mattsson J. Comparison of pseudo-random binary sequence and square-wave transient controlled-source electromagnetic data over the Peon gas discovery, Norway[J]. Geophysical Prospecting, 2011, 59(6): 1114-1131.
4 Ziolkowski A, Parr R, Wright D, et al. Multi-transient electromagnetic repeatability experiment over the North Sea Harding field[J]. Geophysical Prospecting, 2010, 58: 1159-1176.
5 Ziolkowski A, Hobbs B A, Wright D. Multitransient electromagnetic demonstration survey in France[J]. Geophysics, 2007, 72(4): 197-209.
6 Sorensen K I, Auken E. New developments in high resolution airborne TEM instrumentation[J]. ASEG Extended Abstracts, 2003(2): 1-4.
7 Eadie T, Legault J M, Plastow G, et al. VTEM ET: an improved helicopter time-domain EM system for near surface applications[J]. ASEG Extended Abstracts, 2018(1): 1-5.
8 武欣, 薛国强, 方广有. 中国直升机航空瞬变电磁探测技术进展[J]. 地球物理学进展, 2019, 34(4): 1679-1686.
Wu Xin, Xue Guo-qiang, Fang Guang-you. Development of helicopter-borne transient electromagnetic in China[J]. Progress in Geophysics, 2019, 34(4): 1679-1686.
9 Wu Xin, Fang Guang-you, Xue Guo-qiang, et al. The development and applications of the helicopter-borne transient electromagnetic system CAS-HTEM[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(4): 653-663.
10 王麒. 基于PC104架构的时间域航空电磁多信息流数据收录系统研制[D]. 长春: 吉林大学仪器科学与电气工程学院, 2021.
Wang Qi. Research on multi-stream data recording system of time domain airborne electromagnetic based on PC104 architecture[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2021
11 齐彦福, 殷长春, 王若, 等. 多通道瞬变电磁m序列全时正演模拟与反演[J]. 地球物理学报, 2015, 58(7): 2566-2577.
Qi Yan-fu, Yin Chang-chun, Wang Ruo, et al. Multi-transient EM full-time forward modeling and inversion of m-sequence[J]. Chinese J Geophys, 2015, 58(7): 2566-2577.
12 景春阳. 伪随机源浅层航空电磁探测的时域辨识方法研究[D]. 长春: 吉林大学仪器科学与电气工程学院, 2021.
Jing Chun-yang. Research on time domain identification method for shallow airborne electromagnetic exploration using pseudo-random current[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2021
13 汤井田, 李飞, 罗维斌. 基于逆重复m序列的精细探测电法发送机设计[J]. 地球物理学进展, 2007, 22(3): 994-1000.
Tang Jing-tian, Li Fei, Luo Wei-bin. Electrical fine-exploration transmitter design based on invert-repeated m-sequence[J]. Progress in Geophysics, 2007, 22(3): 994-1000.
14 Jing Chun-yang, Zhu Kai-guang, Peng Cong, et al. Early time data processing in shallow AEM exploration[C]∥Proceedings of the 9th International Conference on Environmental and Engineering Geophysics, Princeton, USA, 2020: 837-842.
15 陈曙东. 瞬变电磁收录系统的研究[D]. 长春: 吉林大学电子学院, 2009.
Chen Shu-dong. Research of receiving system of transient electromagnetic[D]. Changchun: College of Electronics, Jilin University, 2009.
16 符磊. 感应式空心线圈传感器关键技术研究[D]. 长春: 吉林大学仪器科学与电气工程学院, 2013.
Fu Lei. Key technology research of inductive air-core coil sensor[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2013.
17 Chen C, Fei L, Jun L, et al. An optimized air-core coil sensor with a magnetic flux compensation structure suitable to the helicopter TEM system[J]. Sensors, 2016, 16(4): 508.
18 刘飞. 直升机时间域电磁探测系统动态噪声产生机理及抑制方法研究[D]. 长春: 吉林大学仪器科学与电气工程学院, 2019.
Liu Fei. Research on generation mechanism and suppression method of motion induced noise in helicopter time domain electromagnetic system[D]. Changchun: College of Instrumentation & Electrical Engineering, Jilin University, 2019
19 武欣, 薛国强, 底青云, 等. 伪随机编码源电磁响应的精细辨识[J]. 地球物理学报, 2015, 58(8): 2792-2802.
Wu Xin, Xue Guo-qiang, Di Qing-yun, et al. Accurate identification for the electromagnetic impulse response og the earth with pseudo random coded waveforms[J]. Chinese J Geophys, 2015, 58(8): 2792-2802.
20 王世隆, 林君, 王言章, 等. 直升机式航空时间域电磁法全波收录[J]. 吉林大学学报: 工学版, 2011, 41(3): 776-781.
Wang Shi-long, Lin Jun, Wang Yan-zhang, et al. Helicopter-borne TEM full-wave recording[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(3): 776-781.
[1] Xiao-hui WENG,You-hong SUN,Shu-jun ZHANG,Jun XIE,Zhi-yong CHANG. Oil and gas detection method and experimental new technology based on bionic nasal chamber optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 382-388.
[2] ZHOU Feng-dao, WANG Shuang, HAN Si-yu, XU Fei, LIAN Shi-bo, SUN Cai-tang. Improved quadrature detection algorithm for controlled source electromagnetic detection [J]. 吉林大学学报(工学版), 2016, 46(6): 2128-2136.
[3] YU Sheng-bao, SU Fa, ZHENG Jian-bo, ZHU Zhan-shan. Design of transient electromagnetic receiving system based on LabVIEW [J]. 吉林大学学报(工学版), 2016, 46(5): 1725-1731.
[4] ZHOU Feng-dao, DING Kai-lai, ZENG Xin-sen, XUE Kai-chang, SUN Cai-tang. Improved orthogonal lock-in amplification based on step wave reference signal [J]. 吉林大学学报(工学版), 2016, 46(3): 996-1003.
[5] TIAN Bao-feng, WANG Yue, ZHANG Jian, WU Pei-lin, ZHOU Yuan-yuan. Design and implementation of an electromagnetic noise test system in nuclear magnetic resonance sounding environment [J]. 吉林大学学报(工学版), 2015, 45(6): 2034-2042.
[6] ZHOU Feng-dao, TANG Hong-zhong, GUO Xin, WANG Jin-yu. Current overshoot produce principle and inhibition of transmitter of time domain electromagnetic detection system [J]. 吉林大学学报(工学版), 2013, 43(04): 1023-1028.
[7] ZHOU Feng-dao, WANG Jin-yu, TANG Hong-zhong, ZHANG He, ZHOU Ji-yu. Multi-frequency digital drive signal generation technology in near surface electromagnetic detection domain [J]. 吉林大学学报(工学版), 2013, 43(03): 682-687.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!