Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (12): 3501-3507.doi: 10.13229/j.cnki.jdxbgxb.20220916

Previous Articles    

Meso numerical simulation of alkali aggregate reaction in mortar

Li-li WEI1,2(),Ming-yu HU1()   

  1. 1.School of Infrastructure Engineering,Nanchang University,Nanchang 330031,China
    2.School of Resources Environment and Architectural Engineering,Chifeng University,Chifeng 024000,China
  • Received:2022-07-21 Online:2023-12-01 Published:2024-01-12
  • Contact: Ming-yu HU E-mail:wlili85555@163.com;yidajiang11112@163.com

Abstract:

Because there is vertical pressure on the upper part in the field test of local mortar alkali aggregate, in order to study the mechanical properties of mortar alkali aggregate reaction, a mesoscopic numerical simulation of mortar alkali aggregate reaction was carried out. The sample was prepared by mortar bar rapid method, and the expansion rate, compressive strength and flexural strength of mortar sample were measured. The mortar sample was regarded as a three-phase composite material composed of aggregate, interface transition zone (ITZ) and mortar matrix, and the alkali-aggregate reaction expansion model and alkali-aggregate reaction strength model were established to simulate the compressive and flexural properties of samples with different sizes at different ages, which solves the problem of high compressive and flexural strength of mortar, and obtains the conclusion that the simulation results are basically consistent with the test results. The simulation has good practicability.

Key words: mortar, alkali aggregate reaction, meso numerical model, mechanical property

CLC Number: 

  • TU528.56

Table 1

Main physical properties of cement"

项目抗折强度/MPa抗压强度/MPa凝结周期/min
3 d28 d3 d28 d初凝终凝
标准要求≥4.0≥6.5≥22.0≥42.5>45<390
测定值5.792750.1133225

Table 2

Mortar mix proportion"

试样编号试样规格/mm水泥 质量/gNaOH质量/g水质量/g集料 质量/g
W125×25×2804402.84206.8990
W240×40×1604840227.51089
W340×40×1604843.12227.51089

Table 3

Strength of W2 and W3"

试样7 d14 d28 d60 d
抗压抗折抗压抗折抗压抗折抗压抗折
W27.5431.288.6643.479.4455.9410.7158.52
W39.3140.779.3641.2310.7347.268.0430.72

Fig.1

Alkali aggregate reaction expansion model"

Fig.2

Alkali aggregate reaction intensity model"

Table 4

Mechanical parameters of mortar materials"

周期/d原料

密度/

(t·mm-3

杨氏 模量/103泊松比热膨胀 系数/10-5膨胀角/(°)偏心率fb0/fc0k黏性 系数抗压 强度/MPa抗拉 强度/MPa
7骨料2.30500.21.40300.11.160.6670.00510010
ITZ1.80260.2175300.11.160.6670.005252.5
砂浆基体1.80300.21.40300.11.160.6670.005284.7
14骨料2.30500.21.40300.11.160.6670.00510010
ITZ1.80260.2330300.11.160.6670.005252.5
砂浆基体1.80300.21.40300.11.160.6670.005405.5
28骨料2.30500.21.40300.11.160.6670.00510010
ITZ1.80260.2450300.11.160.6670.005252.5
砂浆基体1.80300.21.40300.11.160.6670.00551.56
60骨料2.30500.21.40300.11.160.6670.00510010
ITZ1.80260.2560300.11.160.6670.005252.5
砂浆基体1.80300.21.40300.11.160.6670.00553.887.3

Fig.3

Comparison between simulation results and test results"

Fig.4

Cloud diagram of compressive stress of alkali aggregate reaction strength model"

Fig.5

Cloud diagram of bending stress of alkali aggregate reaction strength model"

1 王耀, 纵岗, 付佳佳,等. 再生骨料取代率及老砂浆强度对混凝土细观性能的影响[J]. 混凝土, 2020(5): 64-68.
Wang Yao, Zong Gang, Fu Jia-jia, et al. Effect of recycled aggregate replacement ratio and old mortar strength on mesoscopic properties of concrete[J]. Concrete, 2020(5): 64-68.
2 金浏, 杨旺贤, 余文轩,等. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析[J]. 工程力学, 2020, 37(3): 56-65.
Jin Liu, Yang Wang-xian, Yu Wen-xuan, et al. Dynamic compressive failure and size effect in lightweight aggregate concrete based on meso-scale simulation[J]. Engineering Mechanics, 2020, 37(3): 56-65.
3 朱华胜, 曾晓辉, 刘海川,等. 水泥乳化沥青砂浆静态力学性能与组成的关系[J]. 硅酸盐学报, 2020, 48(5): 644-651.
Zhu Hua-sheng, Zeng Xiao-hui, Liu Hai-chuan, et al. Relationship between static mechanical properties and composition of cement and emulsified asphalt mortar[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 644-651.
4 朱愿愿, 王爱国, 孙道胜, 等. 煅烧煤矸石细骨料特性及其对砂浆性能的提升作用[J]. 煤炭学报, 2021, 46(11): 3657-3669.
Zhu Yuan-yuan, Wang Ai-guo, Sun Dao-sheng, et al. Characteristics of coal gangue fine aggregates after calcination and its effects on the improvement of mortar properties[J]. Journal of China Coal Society, 2021, 46(11): 3657-3669.
5 张彩虹, 宋志刚, 毛敏, 等. 水泥砂浆受硫酸溶蚀的试验研究和数值模拟[J]. 自然灾害学报, 2021, 3(1):112-121.
Zhang Cai-hong, Song Zhi-gang, Mao Min, et al. Experimental study and numerical simulation on cement mortar corroded by sulfuric acid[J]. Journal of Natural Disasters, 2021, 3(1): 112-121.
6 王昊, 王文杰. 全长砂浆锚固玻璃钢锚杆动力响应数值模拟分析[J]. 化工矿物与加工, 2020, 49(9): 10-14.
Wang Hao, Wang Wen-jie. Numerical simulation analysis of dynamic response to the FRP bolt anchored with full length of mortar[J]. Industrial Minerals & Processing, 2020, 49(9): 10-14.
7 陈聪, 柯国军, 谭天戈, 等. 蒸压养护对废玻璃粉复合砂浆力学性能的改善[J]. 中国粉体技术, 2020, 26(4): 46-51.
Chen Cong, Ke Guo-jun, Tan Tian-ge, et al. Improvement of mechanical properties of waste glass powder composite mortar by autoclave curing[J]. China Powder Science and Technology, 2020, 26(4): 46-51.
8 钱达友, 杨建明. 水冻融和硫酸盐溶液冻融环境下MKPC砂浆的耐久性评价[J]. 硅酸盐通报, 2020, 39(2): 359-366.
Qian Da-you, Yang Jian-ming. Durability evaluation of MKPC mortar under water-freeze-thaw and sulfate solution freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 359-366.
9 李黎, 陶佳诚, 曹明莉, 等. 混杂纤维增强砂浆高温后单轴受压本构关系[J]. 复合材料学报, 2022, 39(11):5375-5385.
Li Li, Tao Jia-cheng, Cao Ming-li, et al. Constitutive relation of uniaxial compression of hybrid fiber reinforced mortar after high temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5375-5385.
10 王宁, 马涛, 陈丰, 等. 影响智能骨料感知的关键因素及数据分析方法[J]. 吉林大学学报: 工学版, 2023, 53(6): 1799-1808.
Wang Ning, Ma Tao, Chen Feng, et al. Key factors affecting smart aggregate perception and data analysis methods[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1799-1808.
11 杜修力,金浏. 混凝土材料宏观力学特性分析的细观单元等效化模型[J]. 计算力学学报, 2012, 29(5): 654-661.
Du Xiu-li, Jin Liu. Meso-element equivalent model for macro-scopic mechanical properties analysis of concrete materials[J]. Chinese Journal of Computational Mechanics, 2012,29(5): 654-661.
12 杜修力,金浏. 非匀质混凝土材料破坏的三维细观数值模拟[J]. 工程力学, 2013, 30(2): 82-88.
Du Xiu-li, Jin Liu. Numerical simulation of three-dimensional meso-mechanical model for damage process of heterogeneous concrete[J]. Engineering Mechanics, 2013, 30(2): 82-88.
[1] Liang XU,Yu-bo BIAN,Song ZHOU,Jing-hou XIAO. Effect of high temperature immersion on properties of T800 carbon fiber/epoxy resin composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1943-1950.
[2] Kai CUI,Peng-fei XU,Jing-jing HUANG,Xiang-peng YU,Xiao-hai WANG. Comparison of bond performance between grouting slurry and soil interface in soil sites and durability in arid environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2856-2868.
[3] Wen-cui XIU,Hua WU,Ying HAN,Yun-xu LIU. Effect of isothermal heat treatment temperature on microstructure and mechanical properties of super bainite [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 520-525.
[4] Rui XIONG,Ning QIAO,Ci CHU,Fa YANG,Bo-wen GUAN,Yan-ping SHENG,Dong-yu NIU. Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortars [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 183-190.
[5] ZHUNG Wei-min, ZHAO Wen-zeng, XIE Dong-xuan, LI Bing. Joint performance analysis on connection of ultrahigh-strength steel and aluminum alloy with hot riveting [J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[6] ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[7] LIU Xiao-bo, ZHOU De-kun, ZHAO Yu-guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments [J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[8] LI Chun-ling, FAN Ding, WANG Bin, YU Shu-rong. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder [J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[9] LIU Jun-zhe, YUAN Wei-jing, HE Zhi-min, BA Ming-fang, CHEN Jian-bin. Influence of carbonation on alkali-aggregate reaction in concrete [J]. 吉林大学学报(工学版), 2015, 45(3): 783-787.
[10] CHENG Yong-chun, MA Hui-li, ZHANG Peng, TAO Jing-lin, HUANG Jian-ping. Experimental study of physical and mechanical properties of asphalt mortars with different fillers [J]. 吉林大学学报(工学版), 2014, 44(6): 1628-1632.
[11] LI Xin,WANG Gang,LU Guan-han,GU Zheng-wei,XU Hong. Weldability of 22MnB5 after hot stamping by TIG welding processes [J]. 吉林大学学报(工学版), 2014, 44(3): 708-711.
[12] BAI Zhi-fan, LI Gui-zhong, WANG Chao, WANG Liang, ZHANG Zhi-min. Microstructure and mechanical property of the welded joints for high-speed train bogie [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 207-211.
[13] SUN Ji-yu, WANG Yue-ming, PAN Chun-xiang, CONG Xian-ling. Static and dynamic nano-mechanical properties of the keratinous of cattle horns [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 475-478.
[14] GU Zheng-wei, YU Si-bin, HAN Li-jun, MENG Jia, XU Hong. Laser lap-welding performance of ultra-high strength steel and micro-alloy steel [J]. 吉林大学学报(工学版), 2012, 42(02): 349-353.
[15] BAI Zhi-fan, LI Gui-zhong, WANG Chao. Microstructure and mechanical property of the welded joints of S355J2W+N steel [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 202-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!