Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (1): 183-190.doi: 10.13229/j.cnki.jdxbgxb20180882

Previous Articles    

Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortars

Rui XIONG1,2(),Ning QIAO1,Ci CHU1,Fa YANG3,Bo-wen GUAN1,2,Yan-ping SHENG1,2,Dong-yu NIU1,2   

  1. 1. School of Materials Science and Engineering, Chang′an University, Xi′an 710061, China
    2. Engineering Research Center of Transportation Materials of Ministry of Education, Xi′an 710061, China
    3. Yunnan Communications Investment and Construction Group Co. , Ltd. , Kunming 650228, China
  • Received:2018-08-25 Online:2020-01-01 Published:2020-02-06

Abstract:

In order to explore the influence of salts on the low-temperature rheological properties and adhesion properties of asphalt mortars, preparation method of asphalt mortars with salt particles replacing mineral powder by volume ratio 1:1 and the bending beam rheological test (BBR) were used to study the effects of different salt-doped asphalt mortars on the low-temperature rheological properties at 30 d and 120 d test age. The corresponding Burgers model was built to analyze the effect of salinity on low temperature viscoelasticity of asphalt. Through the contact angle test, the surface energy parameters of asphalt were obtained, and the adhesion characteristics of different asphalt mortar were evaluated. Scanning electron microscopy (SEM) and infrared spectroscopy (FTIR) were used to explore the microscopic mechanism of salt-doped asphalt mortars. The results showed that compared with control asphalt, the rheological property of salt-doped asphalt mortars at low temperature decreases with the increase of age. At the age of 120d, the contact angles of asphalt increase obviously, the surface energy of salt-doped asphalt mortars decreases and its adhesion property degrades. The dissolution and crystallization process of salt particle and its salt aging effect are the main inducing factors of performance deterioration of salt-doped asphalt mortars.

Key words: road engineering, salt, asphalt mortar, low temperature rheological characteristic, contact angle, adhesion characteristic, salt aging effect

CLC Number: 

  • U416.217

Table1

Technical properties of SK?90# asphalt"

指标 单位 技术要求 试验结果 试验方法
针入度 15 ℃, 100 g, 5 s 0.1 mm 43 T0604
25 ℃, 100 g, 5 s 80~100 86
30 ℃, 100 g, 5 s 160
软化点(R&B) ≥44 47 T0606
延度(15 ℃,5 cm/min) cm ≥100 >180 T0605
闪点 ≥260 304 T0611
溶解度 % ≥99.5 99.8 T0607
密度(15 ℃) g/cm3 1.030 T0603

RTFOT

(163 ℃,75 min)

质量变化 % ±0.8 0.15 T0610
残留针入度比(25 ℃) % ≥57 60.5 T0604
残留延度(10 ℃) cm ≥8 9.8 T0605

Table 2

Technical properties of mineral filler"

项目 单位 技术要求 试验结果 试验方法
表观密度 t/m3 ≥2.50 2.730 T0352
含水量 % ≤1 0.429 T0103
粒度范围<0.6 mm % 100 100 T0351
<0.15 mm % 90~100 97.8 T0351
<0.075 mm % 75~100 95.1 T0351
亲水系数 <1 0.313 T0353

Table 3

Surface free energy parameters of three fluids mJ/m2 "

液体类型 γ L γ L d γ L p γ L + γ L -
蒸馏水 72.8 21.8 51.0 25.5 25.5
甘油 63.4 37.0 26.4 3.92 57.4
乙二醇 48.3 29.3 19.0 1.92 47.0

Fig.1

Stiffness modulus S and creep rate m of asphalt mortarsat different temperatures"

Fig.2

Example of Burgers model fitting curve"

Table 4

Results of Burgers’s parameters of asphalt mortars at different temperatures"

测试温度(龄期) 胶浆类型 E 1 /MPa η 1/(MPa·s) E 2/MPa η 2/(MPa·s) λ/s τ/s
-6 ℃(30 d) Matrix 346.79 4 932.53 196.72 937.23 14.2 4.8
LMF 782.53 12 554.31 290.73 2 474.54 16.0 8.5
Na2SO4 730.59 12 834.00 275.46 2 418.66 17.6 8.8
NaCl 714.15 13 042.15 287.76 2 589.70 18.3 9.0
-6 ℃(120 d) LMF 912.99 17 624.22 342.42 3 097.03 19.3 9.0
Na2SO4 768.39 15 581.16 318.66 2 793.52 20.3 8.8
NaCl 834.14 16 737.97 332.88 3 088.20 20.1 9.3
-12 ℃(30 d) Matrix 527.98 16 707.08 262.37 2 729.59 31.6 10.4
LMF 1 550.60 49 238.56 1 037.81 8 772.50 31.8 8.5
Na2SO4 1 266.20 63 975.90 741.95 9 754.37 50.5 13.1
NaCl 1 300.75 59 138.70 801.74 9 313.78 45.5 11.6
-12 ℃(120 d) LMF 1 560.36 72 375.70 835.49 9 732.53 46.4 11.6
Na2SO4 1 253.03 48 445.35 775.89 8 272.98 38.7 10.7
NaCl 1 415.10 73 947.00 923.02 11 223.95 52.3 12.2
-18 ℃(30 d) Matrix 798.17 68 529.06 688.81 9 428.90 85.9 13.7
LMF 2 091.98 234 840.90 2 209.36 34 816.08 112.3 15.8
Na2SO4 1 767.52 206 386.83 1 954.40 29 102.74 116.8 14.9
NaCl 1 712.29 208 508.50 1 826.30 27 738.74 121.8 15.2
-18 ℃(120 d) LMF 2 075.84 268 028.20 2 359.68 35 919.30 129.1 15.2
Na2SO4 1 981.75 241 741.30 2 131.77 32 158.26 122.0 15.1
NaCl 2 307.47 316 521.10 2 684.66 43 237.83 137.2 16.1
-24 ℃(30 d) Matrix 1 237.68 253 376.30 1 890.61 35 478.86 204.7 18.8
LMF 2 775.28 748 004.60 5 281.96 100 295.60 269.5 19.0
Na2SO4 2 600.22 678 850.88 5 183.93 94 999.29 261.1 18.3
NaCl 2 739.30 702 196.10 5 317.11 95 446.77 256.3 18.0
-24 ℃(120 d) LMF 2 680.40 797 835.35 6 048.74 93 376.07 297.7 15.4
Na2SO4 2 473.14 569 291.42 4 193.03 83 594.54 230.2 19.9
NaCl 2 961.77 923 043.40 6 426.94 129 106.5 311.7 20.1

Table 5

Low temperature index m/S for asphalt mortars"

测试温度(龄期) 基质沥青 LMF沥青胶浆 Na2SO4沥青胶浆 NaCl沥青胶浆
-6℃(30 d)

0.005 80

0.004 93 0.00513 0.00491
-6℃(120 d) 0.003 55 0.00425 0.00402
-12℃(30 d) 0.004 56 0.001 33 0.001 44 0.001 24
-12℃(120 d) 0.001 06 0.001 12 0.001 02
-18℃(30 d) 0.001 18 0.000 36 0.000 40 0.000 40
-18℃(120 d) 0.000 31 0.000 35 0.000 27
-24℃(30 d) 0.000 36 0.000 13 0.000 17 0.000 13
-24℃(120 d) 0.000 11 0.000 14 0.000 10

Table 6

Contact angle between asphalt mortarsand liquids"

胶浆类型 蒸馏水 甘油 乙二醇
均值/(°) 变异系数/% 均值/(°) 变异系数/% 均值/(°) 变异系数/%
Matrix 112.85 1.46 103.84 0.29 81.97 1.46
LMF30 117.64 1.22 105.72 0.35 82.58 1.41
LMF120 119.37 1.53 106.99 0.36 90.97 0.94
Na2SO430 117.54 1.75 108.38 0.71 82.35 1.51
Na2SO4120 118.10 0.58 109.16 0.98 86.70 0.99
NaCl30 115.51 1.54 106.37 0.79 91.29 0.64
NaCl120 119.81 1.87 108.23 0.55 92.23 0.79

Fig.3

Surface free energy and its components of asphalt mortars"

Fig.4

"

Fig.5

SEM micrographs of matrix asphalt and asphalt mortars"

1 Xiong R , Wang L , Guan B W , et al . Durability prediction of asphalt mixture exposed to sulfate and dry-wet circle erosion environment[J]. International Journal of Pavement Research and Technology, 2015, 8(1): 53-57.
2 韩吉伟,崔亚楠,李嘉迪,等 . 盐冻循环条件下改性沥青的细观结构及低温流变性能[J]. 复合材料学报,2016,33(8):1718-1724.
Han Ji-wei , Cui Ya-nan , Li Jia-di , et al . Microstructure and rheological properties at lowtemperature of modified asphalt under salt freezing cycle[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1718-1724.
3 Feng D C , Yi J Y , Wang D S , et al . Impact of salt and freeze-thaw cycles on performance of asphalt mixtures in coastal frozen region of China[J]. Cold Regions Science and Technology, 2010, 62(1): 34-41.
4 Han J W , Cui Y N , Li Z , et al . Research on the microstructure and performance of asphalt after the salt Freezing cycle[J]. Applied Mechanics and Materials, 2014, 575: 238-244.
5 马慧莉 . 无机填料对沥青胶浆力学性能影响的细观力学分析[D]. 长春:吉林大学交通学院,2013.
Ma Hui-li . Research of inorganic filler on the properties of asphalt mastic by meso-mechanical method[D]. Changchun:College of Transportation, Jilin University, 2013.
6 Guo Meng , Tan Yi-qiu , Hou Yue , et al . Improvement of evaluation indicator of interfacial interaction between asphalt binder and mineral fillers[J]. Construction and Building Materials, 2017, 151: 236-245.
7 熊锐,关博文,盛燕萍 . 硫酸盐-干湿循环侵蚀环境下水镁石纤维沥青混合料抗疲劳性能[J]. 武汉理工大学学报,2014,36(10):45-51.
Xiong Rui , Guan Bo-wen , Sheng Yan-ping . Anti-fatigue property of brucite fiber reinforced asphalt mixture under sulfate and dry-wet circle corrosion environment[J]. Journal of Wuhan University of Technology, 2014, 36(10): 45-51.
8 黄新颜,沙爱民,蒋玮,等 . 盐分侵蚀对沥青和沥青混合料性能影响及作用机理[J]. 长安大学学报:自然科学版,2017,37(3):33-38,46.
Huang Xin-yan , Sha Ai-min , Jiang Wei , et al . Effect and mechanism of salt erosion on performance of bitumen and asphalt mixtures[J]. Journal of Chang'an University(Natural Science Edition), 2017, 37(3): 33-38, 46.
9 Liu Z Z , Sha A M , Xing M L , et al . Low temperature property and salt releasing characteristics of antifreeze asphalt concrete under static and dynamic conditions[J]. Cold Regions Science and Technology, 2015, 114: 9-14.
10 陈拴发,刘状壮,邢明亮,等 . 融雪抑冰材料疏水性能影响因素研究[J]. 建筑材料学报,2013,16(6):1053-1057,1071.
Chen Shuan-fa , Liu Zhuang-zhuang , Xing Ming-liang , et al . Research on the factors influencing hydrophobic properties of anti-freezing material[J]. Journal of Building Materials, 2013, 16(6): 1053-1057, 1071.
11 李海莲,李波,王起才,等 . 基于表面能理论的老化温拌SBS改性沥青结合料的粘附性[J].材料导报,2017,31(16):129-133,149.
Li Hai-lian , Li Bo , Wang Qi-cai , et al . Adhesion of aged SBS modified asphalt binder containing warm mix additive based on surface free energy[J]. Materials Review, 2017, 31(16): 129-133, 149.
12 张恺,罗蓉,张德润 . 基于表面自由能理论的彩色树脂类沥青材料润湿性分析[J]. 中国公路学报,2016,29(5):34-40.
Zhang Kai , Luo Rong , Zhang De-run . Wettability analysis on colored resin asphalt binder based on surface free energy theory[J]. China Journal of Highway and Transport, 2016, 29(5): 34-40.
13 Liu S T , Cao W D , Shang S J , et al . Analysis and application of relationships between low-temperature rheological performance parameters of asphalt binders[J]. Construction and Building Materials, 2010, 24(4): 471-478.
[1] Ying WANG,Ping LI,Teng-fei NIAN,Ji-bin JIANG. Short-term water damage characteristics of asphalt mixture based on dynamic water scour effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 174-182.
[2] Ping WAN,Chao-zhong WU,Xiao-feng MA. Discriminating threshold of driving anger intensity based on driving behavior features by ROC curve analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 121-131.
[3] Chun-feng ZHU,Yong-chun CHENG,Chun-yu LIANG,Bo XIAO. Road performance experiment of diatomite⁃basalt fiber composite modified asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 165-173.
[4] Sheng-tong DI,Chao JIA,Wei-guo QIAO,Kang LI,Kai TONG. Loading rate effect of mesodamage characteristics of crumb rubber concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1900-1910.
[5] Yun-long ZHANG,Liu-guang ZHOU,Jing WANG,Chun-li WU,Xiang LYU. Effects of freeze-thaw cycles on mechanical properties of silty sand and subgrade slope stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1531-1538.
[6] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[7] Xiao⁃zhen LI,Jun⁃zhe LIU,Yan⁃hua DAI,Zhi⁃min HE,Ming⁃fang BA,Yu⁃shun LI. Effect of carbonation on nitrite ion distribution in cement paste [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1162-1168.
[8] Tian⁃lai YU,Hai⁃sheng LI,Wei HUANG,Si⁃jia WANG. Shear strengthening of reinforced concrete beam with prestressed steel wire ropes [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1134-1143.
[9] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[10] Jing WANG,Xiang LYU,Xiao⁃long QU,Chun⁃ling ZHONG,Yun⁃long ZHANG. Analysis of relationship between subgrade soil shear strength and chemical and minerals component [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 766-772.
[11] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[12] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[13] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[14] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[15] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!