Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 558-563.doi: 10.13229/j.cnki.jdxbgxb.20220390

Previous Articles    

Temperature compensation method of biaxial inclination sensor

Xin-hua LIN1,2(),Zi-dong ZHOU1,2,Shu-fang SHAO2,Wei LIN2,Rui ZHANG2   

  1. 1.Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China
    2.Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China
  • Received:2022-04-11 Online:2024-02-01 Published:2024-03-29

Abstract:

The inclination sensors based on MEMS accelerometers has been widely used. However, it is well known that a large temperature drift exists in MEMS accelerometers. In this paper, the temperature compensation method based on the normalization of diagonal elements of the transformation matrix was proposed. Both the transformation matrix accounting for the sensitivity, non-orthogonality and misalignment and the other matrix accounting for the bias were obtained with the conventional six-position method. The problem that the matrix related to the sensitivity inconsistence can't be separated from the matrix related to the non-orthogonality was overcome through the normalization of the diagonal elements of transformation matrices obtained under the different temperatures relative to the corresponding elements in the transformation matrices obtained under the room temperature. As a result, the temperature drift of the sensitivity and bias of MEMS accelerometers was compensated. Under the testing temperature of -20 ℃~50 ℃, the precision of the inclination sensor was obviously improved after compensation.

Key words: inclination sensor, tri-Axial MEMS accelerometers, temperature compensation model, normalization of the diagonal elements of transformation matrices

CLC Number: 

  • TP212.9

Fig.1

Inclination sensor attitude angle"

Fig.2

Accelerometer sensitive axes output changes with temperature"

Table 1

Room temperature error model coefficient"

系数参数系数参数
B104.59E-03A126.00E-05
B202.32E-03A222.98E-03
B303.51E-02A321.80E-05
A112.91E-03A133.00E-06
A213.00E-05A238.00E-06
A319.00E-06A332.89E-03

Table 2

Fitting results of thermal compensation parameters"

坐标轴Ci1Ci0Bi1Bi0
X1.06E-041.0031.85E-049.24E-03
Y3.01E-049.92E-011.05E-043.59E-04
Z1.18E-051.003.51E-044.50E-02

Fig.3

Accuracy of pitch angle and roll angle of sensor varies with temperature under different attitude"

Table 3

Thermal compensation results analysis comparison"

姿态角补偿前最大误差/(°)补偿后最大误差/(°)补偿前标准差/(°)补偿后标准差/(°)
俯仰30o0.370.190.180.07
俯仰60o0.960.210.370.07
横滚30o0.700.320.290.13
横滚60o1.000.410.440.16
1 牛国臣,张云霄. 连续型机器人运动学仿真和操控系统设计[J].智能系统学报,2020, 15(6): 1058-1067.
Niu Guo-chen, Zhang Yun-xiao. Kinema tics simulation and control system design of continuous robot[J]. CAAI Transactions on Intelligent Systems, 2020, 15(6): 1058-1067.
2 Liu G, Yang F, Bao X, et al. Robust optimization of a MEMS accelerometer considering temperature variations[J]. Sensors (Basel, Switzerland), 2015, 15(3): 6342-6359.
3 郑长勇, 陈军宁. 一种新型MEMS加速度计温度补偿方法研究[J]. 传感技术学报, 2015, 28(1): 39-42.
Zheng Chang-yong, Chen Jun-ning. Study of a novel method of temperature compensation for MEMS accelerometer[J]. Chinese Journal of Sensors and Actuators, 2015, 28(1): 39-42.
4 周庆飞, 徐明龙. 具有温度自补偿功能的高分辨力倾角传感器的设计[J]. 传感器与微系统, 2012, 31(1): 107-110.
Zhou Qing-fei, Xu Ming-long. Design of inclination sensor with high-resolution and temperature self-compensation[J]. Transducer and Microsystem Technologies, 2012, 31(1): 107-110.
5 郝嵘, 高国伟, 潘宏生, 等. 一种MEMS加速度计的温度误差补偿方法[J]. 北京信息科技大学学报: 自然科学版, 2016, 31(1): 38-42.
Hao Rong, Gao Guo-wei, Pan Hong-sheng, et al. Method of temperature error compensation for MEMS accelerometer[J]. Journal of Beijing Information Science & Technology University, 2016, 31(1): 38-42.
6 龚中良, 刘寒霜. 硅电容式高精度双轴倾角传感器温度漂移补偿研究[J]. 传感器与微系统, 2019, 38(7): 43-45.
Gong Zhong-liang, Liu Han-shuang. Research on temperature drift compensation of silicon capacitive high precision biax tilt angle sensor[J]. Transducer and Microsystem Technologies, 2019, 38(7): 43-45.
7 张从鹏, 宋来军. 具有温度补偿的高精度二维倾角传感器[J]. 传感器与微系统, 2019, 38(6): 86-88.
Zhang Cong-peng, Song Lai-jun. High precision 2D inclinometer with temperature compensation[J]. Transducer and Microsystem Technologies, 2019, 38(6): 86-88.
8 Aggarwal P, Syed Z, NiuAn X, et al. Cost-effective testing and calibration of low cost MEMS sensors for integrated positioning[J]. The Journal of Navigation, 2008, 61(2): 323-336.
9 Liu S, Hu Y, Chen J, et al. Optimization of temperature compensation model on angle sensor based on nonlinear fitting[J]. Journal of Physics: Conference Series, 2018, 1074(1): 012054.
10 Ruzza G, Guerriero L, Revellino P, et al. Thermal compensation of low-cost MEMS accelerometers for tilt measurements[J]. Sensors, 2018, 18(8): 18082536.
11 Yang J, Wu W, Wu Y, et al. Thermal calibration for the accelerometer triad based on the sequential multiposition observation[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 62(2): 467-482.
12 宋丽君, 秦永元. MEMS 加速度计的六位置测试法[J]. 测控技术, 2009, 28(7): 11-13.
Song Li-jun, Qin Yong-yuan. Six-position testing of MEMS accelerometer[J]. Measurement & Control Technology, 2009, 28(7): 11-13.
[1] Guang YAN,Jian-zhong LU,Kai-yu ZHANG,Fan-yong MENG,Lian-qing ZHU. Temperature decoupling large range fiber Bragg grating strain sensor [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1682-1688.
[2] Kun LIU,Shuo JI,Zhen⁃yuan SUN,Hong⁃wei XU,Yong LIU,Jing⁃xia ZHAO. Mechanical structure design and optimization of multifunctional auxiliary toilet wheelchair [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 872-880.
[3] LIU Kun, LIU Yong, YAN Jian-chao, JI Shuo, SUN Zhen-yuan, XU Hong-wei. Dynamic analysis of sit-to-stand human motion based on in vitro-sensor detection [J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[4] WANG Xin, JIA Qing-xuan, GAO Xin, ZHAO Bing, CUI Bao-jiang. Highly efficient RFID adaptive tracking tree anti-collision algorithm [J]. 吉林大学学报(工学版), 2015, 45(4): 1225-1233.
[5] LIU Kun, ZHAO Jian-chen, CAO En-guo, HAN Xuan. Control methods for standing-up rehabilitation robot based on estimation and analysis of lower limb kinetics [J]. 吉林大学学报(工学版), 2015, 45(3): 837-843.
[6] LIU Kun,ZHAO Jianchen,HAN Xuan. Assessment and analysis of lower limb joint kinematics based on nonintrusive virtual sensing method [J]. 吉林大学学报(工学版), 2015, 45(1): 145-152.
[7] LIU Kun, HAN Xuan, LIU Zheng. Ambulatory assessment of human segmental orientation using accelerometers [J]. 吉林大学学报(工学版), 2014, 44(4): 1016-1023.
[8] YANG Jing, XIONG Wei-li, QIN Ning-ning, ZHAO Wei, XU Bao-guo. Energy-efficient data gathering algorithm for wireless sensor networks [J]. 吉林大学学报(工学版), 2011, 41(6): 1720-1725.
[9] QIN Yong, ZHAO Jie, WANG Xiao-yu . Digital magnetic compass based on ellipse
matching error compensation algorithm

[J]. 吉林大学学报(工学版), 2009, 39(02): 489-0493.
[10] WANG Xi-wen, QI Xin, SONG Yu-quan. Capacitive transducer and its development prospect [J]. 吉林大学学报(工学版), 2003, (2): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!