Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (3): 749-760.doi: 10.13229/j.cnki.jdxbgxb.20230945
Hong ZHANG1,2(),Zhi-wei ZHU2,Tian-yu HU1,Yan-feng GONG3,Jian-ting ZHOU1()
CLC Number:
1 | 王有志, 赵文帅, 刘金樟, 等. 斜拉体系加固桥梁桥下连接件力学性能[J]. 吉林大学学报: 工学版, 2022, 52(10): 2376-2384. |
Wang You-zhi, Zhao Wen-shuai, Liu Jin-zhang, et al. Mechanical properties of sub-bridge connectors for bridges reinforced by diagonal tension system[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(10): 2376-2384. | |
2 | Zhou J, Huo L. Computer vision-based detection for delayed fracture of bolts in steel bridges[J]. Journal of Sensors, 2021, 2021: 1-12. |
3 | Park J, Kim T, Kim J. Image-based bolt-loosening detection technique of bolt joint in steel bridges[J/OL]. [2023-08-22]. |
4 | Ramana L, Choi W, Cha Y J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm[J]. Structural Health Monitoring, 2019, 18(2): 422-434. |
5 | Pan Y, Ma Y, Dong Y, et al. A vision-based monitoring method for the looseness of high-strength bolt[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. |
6 | 王保宪, 欧丙泽, 赵维刚, 等. 钢桥密集螺栓异常状态视觉识别方法[J]. 中国铁道科学, 2023, 44(05): 81-93. |
Wang Bao-xian, Bing-ze Ou, Zhao Wei-gang, et al. Abnormal state visual recognition method for dense bolts of steel bridge[J]. China Railway Science, 2023, 44(5): 81-93. | |
7 | Yang X, Gao Y, Fang C, et al. Deep learning-based bolt loosening detection for wind turbine towers[J]. Structural Control and Health Monitoring, 2022, 29(6): No. e2943. |
8 | 李星霖, 周洋, 孙鑫垚, 等. 非接触式螺栓松动在线检测方法研究[J]. 机械设计与制造, 2023(11): 50-53. |
Li Xing-lin, Zhou Yang, Sun Xin-yao, et al. Research on non-contact bolt loosening on-line detection method[J]. Machinery Design & Manufacture, 2023(11): 50-53. | |
9 | Yang Z, Zhao Y, Xu C. Detection of missing bolts for engineering structures in natural environment using machine vision and deep learning[J]. Sensors, 2023, 23(12): No. 5655. |
10 | 戚银城, 武学良, 赵振兵, 等. 嵌入双注意力机制的Faster R-CNN航拍输电线路螺栓缺陷检测[J]. 中国图象图形学报, 2021, 26(11):2594-2604. |
Qi Yin-cheng, Wu Xue-liang, Zhao Zhen-bing, et al. Bolt defect detection for Transmission lines using Faster R-CNN aerial photography embedded with dual attention Mechanism[J]. Chinese Journal of Image and Graphics, 2021, 26(11): 2594-2604. | |
11 | 郝帅, 杨磊, 马旭, 等. 基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J].中国电机工程学报, 2023, 43(6): 2319-2331. |
Hao Shuai, Yang Lei, Ma Xu, et al. Fault detection of YOLOv5 transmission lines based on attention mechanism and cross-scale feature fusion[J]. Proceedings of the CSEE, 2019, 43(6): 2319-2331. | |
12 | Liu L, Zhao J, Chen Z, et al. A new bolt defect identification method incorporating attention mechanism and wide residual networks[J]. Sensors, 2022, 22(19): No. 7416. |
13 | 鞠晓臣, 赵欣欣, 钱胜胜. 基于自注意力机制的桥梁螺栓检测算法[J]. 浙江大学学报: 工学版, 2022, 56(5): 901-908. |
Ju Xiao-chen, Zhao Xin-xin, Qian Sheng-sheng. Self-attention mechanism based bridge bolt detection algorithm[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(5): 901-908. | |
14 | 李刚,张运涛,汪文凯,等. 采用DETR与先验知识融合的输电线路螺栓缺陷检测方法[J]. 图学学报, 2023, 44(3): 438-447. |
Li Gang, Zhang Yun-tao, Wang Wen-kai, et al. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion[J]. Journal of Graphics, 2023, 44(3): 438-447. | |
15 | Wang Q, Wu B, Zhu P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[J/OL]. [2023-08-25]. |
16 | Liu Y, Shao Z, Hoffmann N. Global attention mechanism: retain information to enhance channel-spatial interactions[J/OL]. [2023-08-25]. |
17 | Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J/OL]. [2023-08-25]. |
18 | Ma S L, Xu Y. MPDIoU: a loss for efficient and accurate bounding box regression[J/OL]. [2023-08-28]. |
19 | Ge Z, Liu S, Wang F, et al. YOLOX: exceeding YOLO series in 2021[J/OL]. [2023-09-01]. |
20 | Wang X T, Xie L B, Dong C, et al. RealESRGAN: training real-world blind super-resolution with pure synthetic data[J/OL]. [2023-09-01]. |
21 | Chen C, Liu M Y, Tuzel O, et al. R-CNN for small object detection[C]∥13th Asian Conference on Computer Vision, Taipei, China, 2016: 214-230. |
[1] | Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332. |
[2] | Zhi-qiang HAN,Gang XIE,Ya-juan ZHUO,Zuo-long LUO,Hua-teng LI. Vibration response of continuous girder bridge based on wheel⁃deck coherent excitation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 436-444. |
[3] | Guo-jin TAN,Ji OU,Yong-ming AI,Run-chao YANG. Bridge crack image segmentation method based on improved DeepLabv3+ model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 173-179. |
[4] | Xing WEI,Ya-jie GAO,Zhi-rui KANG,Yu-chen LIU,Jun-ming ZHAO,Lin XIAO. Numerical simulation of residual stress field of stud girth weld in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 198-208. |
[5] | Guan-xu LONG,Xiu-shi ZHANG,Gong-feng XIN,Tao WANG,Gan YANG. Bridge weigh-in-motion combined with machine version [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 188-197. |
[6] | Xin-dai ZUO,Jin-quan ZHANG,Shang-chuan ZHAO. Fatigue stiffness degradation and life prediction method of in⁃service concrete T⁃beams [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2563-2572. |
[7] | Ran AN,You-zhi WANG. Shear properties of shear stud connectors under combined tension and shear loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2554-2562. |
[8] | Hui JIANG,Xin LI,Xiao-yu BAI. Review on development of bridge seismic structural systems: from ductility to resilience [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1550-1565. |
[9] | Chun-li WU,Shi-ming HUANG,Kui LI,Zheng-wei GU,Xiao-ming HUANG,Bing-tao ZHANG,Run-chao YANG. Analysis of pier action effect under flood based on numerical simulation and statistical analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1612-1620. |
[10] | Guo-jin TAN,Qing-wen KONG,Xin HE,Pan ZHANG,Run-chao YANG,Yang-jun CHAO,Zhong YANG. Bridge scour depth identification based on dynamic characteristics and improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1592-1600. |
[11] | Zi-yu LIU,Shi-tong CHEN,Mo-mo ZHI,Xiao-ming HUANG,Zhe-xin CHEN. Ultimate bearing capacity of temporary⁃permanent conversion rush⁃repair steel pier for emergency use [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1601-1611. |
[12] | Yu FENG,Jian-ming HAO,Feng WANF,Jiu-peng ZHANG,Xiao-ming HUANG. Analysis of transient wind⁃induced response of long⁃span bridge under nonstationary wind field [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1638-1649. |
[13] | Hua WANG,Long-lin WANG,Zi-mo ZHANG,Xin HE. Safety early warning technology of continuous rigid frame bridges based on crack width variation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1650-1657. |
[14] | Jun WANG,Jia-wu LI,Feng WANG,Jiu-peng ZHANG,Xiao-ming HUANG. Wind speed distribution in simplified U⁃shaped valley and its effect on buffeting response of long⁃span suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1658-1668. |
[15] | Feng WANG,Shuang-rui LIU,Jia-ying WANG,Jia-ling SONG,Jun WANG,Jiu-peng ZHANG,Xiao-ming HUANG. Size and shape effects of wind drag coefficients for porous structures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1677-1685. |
|