Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 2807-2818.doi: 10.13229/j.cnki.jdxbgxb.20221522

Previous Articles    

Mental workload of drivers at high-density interchanges of freeways based on ECG data

Jin XU1,2(),Zheng-huan CHEN1,Qi-shuo LIAO3,Zhan-ji ZHENG1,He-shan ZHANG1   

  1. 1.School of Traffic & Transportation,Chongqing Jiaotong University,Chongqing 400074,China
    2.Chongqing Key Laboratory of "Human-Vehicle-Road" Cooperation and Safety for Mountain Complex Environment,Chongqing Jiaotong University,Chongqing 400074,China
    3.Chongqing City Transportation Development & Investment Group Co. ,Ltd. ,Chongqing 401121,China
  • Received:2022-11-28 Online:2024-10-01 Published:2024-11-22

Abstract:

To clarify the effects of high-density interchange environments on the mental load of drivers, a field driving test with 38 drivers was conducted in high-density interchange scenarios of “Shanghai Chongqing Expressway” (No.G50) in Chongqing, China. And the ECG data were collected under natural driving conditions using PhysioLAB physiological instrument. Subsequently, a quantitative model of mental workload was developed using factor analysis based on heart rate and heart rate variability indexes to explain drivers' mental workload differences under different interchange spacing. The results show that: The reduction of interchange spacing increases drivers' mental workload, and the average mental workload in small spacing interchanges increases by 15.15% compared with normal-spacing interchanges. Between the different driving styles of drivers and other genders, there are differences in the mental workload. And the reduction in interchange spacing significantly impacts anxious drivers and female drivers. The mental workload decreases after the increased familiarity with the driving environment. Vehicle weaving can lead to a significant increase in the mental workload of the driver. The average mental workload of drivers during the merging of small spacing interchanges increasesby 13.89% compared to the diverging process.

Key words: road engineering, interchange, freeways, high-density interchanges, small spacing interchanges, mental workload

CLC Number: 

  • U491.2

Fig.1

Site of driving test"

Table 1

Information about the test interchange"

试验对象立交净距/m立交类型行驶路线编号行驶工况
白杨沟—跑马坪420小净距立交BP1匝道→主线
BP2主线→匝道
跑马坪—白杨沟480小净距立交PB1主线行驶
PB2辅道行驶
跑马坪—黑石子540小净距立交PH主线→匝道
黑石子—跑马坪840小净距立交HP匝道→主线
白杨沟—东环3200常规净距立交BD主线行驶
东环—白杨沟2800常规净距立交DB主线行驶

Fig.2

Test instruments and vehicles"

Fig.3

Basic information of the subjects"

Fig.4

Correlation between indicators"

Table 2

KMO and Bartlett sphericity test"

KMO 取样足够检验0.639
巴特利特球形检验近似卡方1538.372
自由度6
显著性0.000

Table 3

Common degree of variables"

标准化变量初始提取
ZDRMSSD1.0000.869
ZDSDNN1.0000.896
ZHRm1.0000.928
ZHRmax1.0000.954

Table 4

Total variance explanation"

成分初始特征值提取载荷平方和旋转载荷平方和
特征值方差贡献率/%累积/%特征值方差贡献率/%累积/%特征值方差贡献率/%累积/%
12.74068.49068.4902.74068.49068.4901.85646.40846.408
20.90822.71191.2020.90822.71191.2021.79244.79391.202
30.2315.78196.982
40.1213.018100.000

Fig.5

Gravel map"

Table 5

Factor analysis component matrix"

标准化变量旋转前成分旋转后成分
1212
ZDRMSSD0.8480.3880.8790.310
ZDSDNN0.7810.5350.9340.157
ZHRm0.913-0.3070.4440.855
ZHRmax0.760-0.6140.1200.969

Table 6

Factor score coefficient matrix"

标准化变量成分
12
ZDRMSSD0.519-0.092
ZDSDNN0.614-0.226
ZHRm0.0050.475
ZHRmax-0.2700.679

Fig.6

Contribution rate of each index in mental workload model"

Table 7

Results of variance analysis"

场 景心理负荷值
均值方差
BP10.4060.040
PH0.4050.040
HP0.3630.037
PB10.3430.037
BP20.3630.041
PB20.3160.028
BD0.3450.034
DB0.3180.027
F2.400
Fcrit2.026
P0.020

Fig.7

Mental workload at different spacings"

Fig.8

Mental workload of different evaluation methods"

Fig.9

Mental workload heat map"

Table 8

Results of variance analysis"

驾驶风格小净距立交常规净距立交
均值方差均值方差
焦虑型0.370.040.310.03
愤怒型0.430.040.370.03
冒险型0.360.040.310.03
F3.0651.813
Fcrit3.0273.059
P0.0480.167

Fig.10

Mental workload of different driving styles"

Fig.11

Mental workload of different genders"

Fig.12

Mental workload of different driving laps"

Fig.13

Mental workload of different driving conditions"

Fig.14

Lane change form definition for different scenes"

Table 9

Description of different scenes in the form of lane change"

场景(工况)换道形式模式特征换道涉及 车道数面临的主要冲突来源
匝道→主线(BP1)从匝道进入辅道后驶入车道3,直行通过交织区2

①来自主线3条车道的分流车辆变道驶入辅道;

②车道3的车辆加速直行;

③与前车保持合理间距的行为。

从匝道进入辅道后驶入车道2,直行通过交织区3

①来自主线3条车道的分流车辆变道驶入辅道;

②车道2、3的车辆加速直行;

③与前车保持合理间距的行为。

从匝道进入辅道后驶入车道1,直行通过交织区4

①来自主线3条车道的分流车辆变道驶入辅道;

②车道1、2、3的车辆加速直行;

③与前车保持合理间距的行为。

主线→匝道(BP2)

从主线车道3驶出进入辅道,

完成分流操作

2

①来自匝道的汇入车辆换道驶入主线;

②与前车保持合理间距的行为。

从主线车道2驶出进入辅道,

完成分流操作

3

①来自匝道的汇入车辆换道驶入主线;

②与前车保持合理间距的行为;

③车道3的车辆加速直行。

从主线车道1驶出进入辅道,

完成分流操作

4

①来自匝道的汇入车辆换道驶入主线;

②与前车保持合理间距的行为;

③车道2、3的车辆加速直行。

Fig.15

Mental workload of different lane changes"

1 吕能超, 旷权, 吴萌. 基于HRV量化的高速公路出口匝道区域驾驶负荷特性研究[J]. 安全与环境学报, 2015, 15(4): 143-148.
Neng-chao Lyu, Kuang Quan, Wu Meng. Study on the specific driving workload features of highway off-ramp area based on the HRV index quantization[J]. Journal of Safety and Environment, 2015, 15(4): 143-148.
2 孙雨斐. 高速公路互通式立交路段对驾驶员工作负荷的影响研究[D]. 西安: 长安大学公路学院, 2021.
Sun Yu-fei. Study on the impact of freeway interchange sections on driving workload[D]. Xi'an: School of Highway, Chang'an University, 2021.
3 Hu J B, He L C, Wang R H. Safety evaluation of freeway interchange merging areas based on driver workload theory[J]. Science Progress, 2020, 103(3): 1-16.
4 Hu J B, Wang R H. Classification of driving workload affected by highway alignment conditions based on classification and regression tree algorithm[J]. Traffic Injury Prevention, 2018, 19(2): 214-218.
5 Shakouri M, Ikuma L H, Aghazadeh F, et al. Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: the case of highway work zones[J]. International Journal of Industrial Ergonomics, 2018, 66: 136-145.
6 乔建刚, 杨程, 陈彦欣. 基于驾驶员心率和速度差的高速公路纵坡度研究[J]. 中国安全生产科学技术, 2022,18(5): 216-221.
Qiao Jian-gang, Yang Cheng, Chen Yan-xin. Research on longitudinal slope of expressway based on driver's heart rate and speed difference[J]. Journal of Safety Science and Technology, 2022, 18(5): 216-221.
7 Di Flumeri G, Borghini G, Aricò P, et al. EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings[J]. Frontiers in Human Neuroscience, 2018, 12: 509.
8 Deng T M, Fu J H, Shao Y M, et al. Pedal operation characteristics and driving workload on slopes of mountainous road based on naturalistic driving tests[J]. Safety Science, 2019, 119: 40-49.
9 徐进, 陈薇, 周佳, 等. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报:工学版, 2017, 47(2): 438-445.
Xu Jin, Chen Wei, Zhou Jia, et al. Correlation between steering and driver's workload[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 438-445.
10 朱可宁, 龚波. 高速公路特长隧道出口段驾驶人心理负荷变化规律[J]. 交通科技与经济, 2017, 19(3): 6-9.
Zhu Ke-ning, Gong Bo. Research on driver mental load in exit of super long tunnel[J]. Technology & Economy in Areas of Communications, 2017, 19(3): 6-9.
11 朱彤, 吴玲, 胡月琦, 等. 基于因子模型的高速公路特长隧道驾驶人心理负荷特性研究[J]. 中国公路学报, 2018, 31(11): 165-175.
Zhu Tong, Wu Ling, Hu Yue-qi, et al. Research on characteristics of drivers mental workload in extra-long expressway tunnels based on the factor model[J]. China Journal of Highway Transport, 2018, 31(11): 165-175.
12 郭玉洁, 郭唐仪, 吴军. 基于因子分析的城市隧道驾驶人心理负荷变化规律[J]. 交通运输研究, 2021, 7(2): 91-99.
Guo Yu-jie, Guo Tang-yi, Wu Jun. Change regularity of drivers' psychological load in urban tunnels based on factor analysis[J]. Transport Research, 2021, 7(2): 91-99.
13 乔建刚, 谢一丹. 基于心生理反应的高速公路隧道入口安全[J]. 科学技术与工程, 2021, 21(23): 10074-10079.
Qiao Jian-gang, Xie Yi-dan. Safety of expressway tunnel entrance based on psychophysiological response[J]. Science Technology and Engineering, 2021, 21(23): 10074-10079.
14 Feng Z X, Yang M M, Zhang W H, et al. Effect of longitudinal slope of urban underpass tunnels on drivers' heart rate and speed: a study based on a real vehicle experiment[J]. Tunnelling and Underground Space Technology, 2018, 81: 525-533.
15 徐进, 孙子秋, 王思棋, 等. 高密度互通立交出口匝道驾驶人视觉搜索行为特征[J]. 东南大学学报:自然科学版, 2022, 52(6): 1189-1198.
Xu Jin, Sun Zi-qiu, Wang Si-qi, et al. Characteristics of driver's visual search behavior in exit ramp of high-density interchanges[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(6): 1189-1198.
16 孙龙, 杨程程, 常若松. 多维度驾驶风格量表的修订及初步应用[J]. 人类工效学, 2014, 20(2): 6-9.
Sun Long, Yang Cheng-cheng, Chang Ruo-song. Revision and pre-liminary application of multidimensional driving style inventory[J]. Chinese Journal of Ergonomics, 2014, 20(2): 6-9.
17 王海玮, 温惠英, 刘敏. 夜间环境驾驶员精神负荷的生理特性评估与实验[J]. 吉林大学学报:工学版, 2017, 47(2): 420-428.
Wang Hai-wei, Wen Hui-ying, Liu Min. Experimental evaluation of nighttime driver's physiological characteristics in driving simulator[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 420-428.
18 Fallahi M, Motamedzade M, Heidarimoghadam R, et al. Effects of mental workload on physiological and subjective responses during traffic density monitoring: a field study[J]. Applied Ergonomics, 2016, 52: 95-103.
19 Feng D S, Chen F, Pan X D. Research on driver physiological load at the lowest point of city river-crossing tunnels[J]. Transportation Research Procedia, 2017, 25: 1494-1502.
20 Dey A, Mann D D. Sensitivity and diagnosticity of NASA-TLX and simplified SWAT to assess the mental workload associated with operating an agricultural sprayer[J]. Ergonomics, 2010, 53(7): 848-857.
[1] Ya-ning CUI,Chun-di SI,Tao-tao FAN,Fei WANG. Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1988-1996.
[2] Ying-li GAO,Xiao-lei GU,Mei-jie LIAO,Xin-lang HU,Yu-tong XIE. Rheological properties and modification mechanism of SiO2 aerogel/reactive elastomer terpolymer/Polyphosphoric acid composite modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1978-1987.
[3] Yong-li XU,Xu-lan YANG,Ji-sen ZHOU,Song-han YANG,Ming-gang SUN. Asphalt fume composition of warm mix asphalt and smoke suppression performance of warm mix agent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1701-1707.
[4] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[5] Tong-tong WAN,Hai-nian WANG,Wen-hua ZHENG,Po-nan FENG,Yu CHEN,Chen ZHANG. Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1045-1057.
[6] Jun CHEN,Zhen-hao SUN,Cheng ZHAO,Xin-yi WU,Jun-peng WANG. Laboratory investigation on cooling effect of multi-layer phase change asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 180-187.
[7] Nai-peng TANG,Chen-yang XUE,Shao-peng LIU,Hong-zhou ZHU,Rui LI. Review on aging mechanism, characterization and evaluation of crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 22-43.
[8] Zhuang WANG,Zhen-gang FENG,Dong-dong YAO,Qi CUI,Ruo-ting SHEN,Xin-jun LI. Research progress of conductive asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 1-21.
[9] Sheng-qian ZHAO,Zhuo-hong CONG,Qing-long YOU,Yuan LI. Adhesion and raveling property between asphalt and aggregate: a review [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2437-2464.
[10] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[11] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[12] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[13] Qing-xia ZHANG,Ji-lin HOU,Xin-hao AN,Xiao-yang HU,Zhong-dong DUAN. Road roughness identification method based on vehicle impulse response [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1765-1772.
[14] Ping JIANG,Ye-wen CHEN,Xian-hua CHEN,Wei-qing ZHANG,Na LI,Wei WANG. Unconfined compression behavior of modified lime stabilized soil under dry wet and freeze⁃thaw cycles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1809-1818.
[15] Chun-di SI,Ya-ning CUI,Zhong-yin XU,Tao-tao FAN. Meso⁃mechanical behavior analysis of asphalt bridge deck pavement after interlayer bonding failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1719-1728.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!