Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 333-338.doi: 10.13229/j.cnki.jdxbgxb.20231349

Previous Articles    

Facial super-resolution reconstruction method based on generative adversarial networks

Xi ZHANG(),Shao-ping KU()   

  1. School of Computer Science and Artificial Intelligence,Wuhan University of Technology,Wuhan 430070,China
  • Received:2023-12-05 Online:2025-01-01 Published:2025-03-28
  • Contact: Shao-ping KU E-mail:zhangxi20231111@163.com;sissi810588969@126.com

Abstract:

In order to solve the problem of low peak signal-to-noise ratio and structural similarity of reconstructed face images, a super-resolution reconstruction method based on generative adversary-network is proposed. A two-branch generator network is created, the shallow features of the image are obtained by using the feature extraction module in the network, the high-frequency branches of the image are reconstructed, the high-frequency data of the low-resolution image is trained by the deep residual network, and the face image data is mapped. Stop updating fixed generator parameters, use relative discriminator network to identify the authenticity of face image reconstruction, introduce attention mechanism to optimize the reconstruction performance of generative adversarial network, evaluate the reconstruction reliability by perception loss function, and realize the super-resolution reconstruction of face. The experimental results show that the proposed method can effectively improve the ability of facial detail reconstruction, and the subjective and objective evaluation indexes are excellent. The subjective evaluation results show that the reconstructed facial images with the proposed method have clearer detailed data, more three-dimensional facial contours, less distortion rate, and more natural and real external features. The objective evaluation results show that the peak signal-to-noise ratio of the proposed method reaches 44.6dB and the structural similarity reaches 0.74, which fully demonstrates the robustness of the proposed method and provides an effective reference for optimizing the application performance of face recognition.

Key words: generate adversarial networks, high frequency component, super resolution, discriminator, loss function

CLC Number: 

  • TP391

Fig.1

Original image"

Fig.2

Comparison of different methods for facial super-resolution reconstruction"

Fig.3

Comparison of peak signal-to-noise ratio forfacial reconstruction using different methods"

Fig.4

Comparison of similarity of facial reconstruction structures using different methods"

1 周燕, 项杨, 曾凡智, 等. 超分辨率重建的微小人脸识别算法[J].小型微型计算机系统, 2020, 41(11):2340-2346.
Zhou Yan, Xiang Yang, Zeng Fan-zhi, et al.Tiny face recognition algorithm based on super-resolution reconstruction[J]. Journal of Chinese Computer Systems, 2020,41(11):2340-2346.
2 李博. 基于视觉传达的多帧图像高分辨率重建仿真[J]. 计算机仿真, 2021, 38(3): 113-116, 121.
Li Bo. High-resolution reconstruction simulation of multi-frame image based on visual communication [J]. Computer Simulation, 2021, 38(3): 113-116, 121.
3 陆要要, 袁家斌, 何珊, 等. 基于超分辨率重建的低质量视频人脸识别方法[J]. 计算机科学, 2021, 48(): 295-302.
Lu Yao-yao, Yuan Jia-bin, He Shan, et al.Low-quality video face recognition method based on super-resolution reconstruction[J]. Computer Science, 2021, 48(Sup.2): 295-302.
4 夏颖, 盖绍彦, 达飞鹏. 双目视觉下基于区域生长的三维人脸重建算法[J]. 计算机应用研究, 2021, 38(3): 932-936.
Xia Ying, Gai Shao-yan, Fei-peng Da.3D face reconstruction algorithm based on region growth in binocular vision[J].Application Research of Computers, 2021,38(3):932-936.
5 周敏, 叶钧, 杨祥. 基于形变模型和随机照片集的人脸三维重建[J]. 控制工程, 2021, 28(7): 1460-1465.
Zhou Min, Ye Jun, Yang Xiang. Face 3D reconstruction method based on morphable model and random photo datesets[J]. Control Engineering of China, 2021, 28(7): 1460-1465.
6 袁健,李佳慧.融合先验信息的残差空间注意力人脸超分辨率重建模型[J].小型微型计算机系统, 2023, 44(5): 1035-1042.
Yuan Jian, Li Jia-hui. A super-resolution reconstruction model of residual space attention based on prior information[J]. Journal of Chinese Computer Systems, 2023, 44(5): 1035-1042.
7 Xu D D, Wang X, Xu Z B,et al.A super-resolution reconstruction algorithm for two-photon fluorescence polarization microscopy[J].Optics Communications, 2021, 44(30): 116-127.
8 Sood Rewa R, Shao W, Kunder C,et al.3D registration of pre-surgical prostate MRI and histopathology images via super-resolution volume reconstruction[J].Medical Image Analysis, 2021, 47(9): 57-70.
9 Qiu D F, Zheng L X, Zhu J Q, et al.Multiple improved residual networks for medical image super-resolution[J]. Future Generation Computer Systems, 2021, 116(9): 200-208.
10 杨巨成, 左美然, 魏峰, 等.基于误差反馈和面部后先验信息的人脸超分辨率重建[J]. 天津科技大学学报, 2022, 37(2): 35-42.
Yang Ju-cheng, Zuo Mei-ran, Wei Feng, et al.Face Super-resolution using error feedback and facial posterior[J]. Journal of Tianjin University of Science & Technology, 2022, 37(2): 35-42.
11 王宸, 刘剑飞, 郝禄国, 等.一种基于InsightFace算法的课堂人脸识别方法研究[J].南开大学学报:自然科学版, 2022, 55(2): 59-68.
Wang Chen, Liu Jian-fei, Hao Lu-guo, et al.A classroom face recognition method based on insightface algorithm[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis(Natural Science Edition), 2022, 55(2): 59-68.
12 Jin Y, Zhang Y, Cen Y G,et al.Pedestrian detection with super-resolution reconstruction for low-quality image[J].Pattern Recognition, 2021, 115(3):No.107846.
13 王鑫刚, 田军委, 刘雪松, 等. 基于改进Yolov5模型的实时人脸检测算法[J]. 激光与红外, 2023, 53(4): 633-640.
Wang Xin-gang, Tian Jun-wei, Liu Xue-song, et al.Real-time face detection algorithm based on improved Yolov5 model[J]. Laser & Infrared, 2023, 53(4):633-640.
14 王红星, 胡永阳, 邓超. 基于LBP和ELM的人脸识别算法研究与实现[J]. 河南理工大学学报: 自然科学版, 2021, 40(5): 139-145.
Wang Hong-xing, Hu Yong-yang, Deng Chao. Research and implementation of face recognition algorithm based on LBP and ELM[J]. Journal of Henan Polytechnic University(Natural Science), 2021, 40(5): 139-145.
15 Huan H, Li P C, Zou N, et al.End-to-end super-resolution for remote-sensing images using an improved multi-scale residual network[J].Remote Sensing, 2021, 13(4): 666-681.
16 Song Q, Liu H F.Deep gradient prior regularized robust video super-resolution[J]. Electronics, 2021, 10(14): No.1641.
17 Liu H, Qian Y R, Yang G,et al.Research on super-resolution reconstruction of remote sensing images: a comprehensive review[J]. Optical Engineering, 2021, 60(10): 107-122.
18 Li X G, Dong N, Huang J L,et al.A discriminative self-attention cycle GAN for face super-resolution and recognition[J]. IET Image Processing, 2021, 15(11): 2614-2628.
19 杜延松,曹林,杜康宁,等.一种基于先验生成对抗网络的人脸超分辨率重建方法[J].电讯技术, 2023, 63(5):618-625.
Du Yan-song, Cao Lin, Du Kang-ning, et al. A method for face super-resolution reconstruction based on prior generation adversarial network[J]. Telecommunication Engineering, 2023, 63(5): 618-625.
[1] Lin BAI,Lin-jun LIU,Xuan-ang LI,Sha WU,Ru-qing LIU. Depth estimation algorithm of monocular image based on self-supervised learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1139-1145.
[2] Xiao-hu SHI,Jia-qi WU,Chun-guo WU,Shi CHENG,Xiao-hui WENG,Zhi-yong CHANG. Residual network based curve enhanced lane detection method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 584-592.
[3] Sheng JIANG,Peng-lang WANG,Zhi-ji DENG,Yi-ming BIE. Image fusion algorithm for traffic accident rescue based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3472-3480.
[4] Jie CAO,Zhi-Dong HE,Ping YU,Jin-hua WANG. Bearing fault diagnosis method under unbalanced data distribution [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2523-2531.
[5] Xue-yun CHEN,Tao XU,Xiao-qiao HUANG. Detection method of medical cell image generation based on conditional generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1414-1419.
[6] Hong-wei ZHAO,Peng WANG,Li-li FAN,Huang-shui HU,Ping-ping LIU. Similarity retention instance retrieval method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2045-2050.
[7] Zi-ji MA,Hao LU,Yan-ru DONG. Dual path convolutional neural network forsingle image super⁃resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2089-2097.
[8] WANG Xin-hua, OUYANG Ji-hong, PANG Wu-bin. Supper-resolution reconstruction of infrared images of compressive coded aperture [J]. 吉林大学学报(工学版), 2016, 46(4): 1239-1245.
[9] QIN Chuan-dong, LIU San-yang. Tumor gene selection based on double regularized support vector machine [J]. 吉林大学学报(工学版), 2013, 43(01): 192-197.
[10] JIANG Yi,ZHANG Shu-fang,HU Qing,SUN Xiao-wen. Improved discriminator algorithm based on four-quadrant arctangent function [J]. 吉林大学学报(工学版), 2011, 41(03): 849-854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!