Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 366-381.doi: 10.13229/j.cnki.jdxbgxb.20230217

Previous Articles    

Design and experiment of distributed hybrid electric tractor powertrain system based on TRIZ theory

Jin-feng LI(),Xue-min ZHANG,Zheng-he SONG,Xiu-heng WU()   

  1. College of Engineering,China Agricultural University,Beijing 100083,China
  • Received:2023-03-11 Online:2025-01-01 Published:2025-03-28
  • Contact: Xiu-heng WU E-mail:lijinfengvip163@163.com;wxh599@cau.edu.cn

Abstract:

Tractors with traditional architecture generally have a series of problems, such as low energy efficiency, difficulty in traction control, power interruption during gear shifting and so on. This paper designs a new architecture of the tractor powertrain system based on TRIZ theory to solve these problems. Firstly, the paper analyzes and establishes the "substance-field model" of key problems such as power interruption during gear shifting, and sliding of the driving wheel of tractors with traditional architecture, etc. Then, the "conflict solving principle" is adopted to solve the conflicts involved in the design of the tractor powertrain system, and the final optimization scheme of the tractor powertrain system innovative design is obtained. Finally, the feasibility of the proposed architecture is verified by simulation tests and prototype tests. This new powertrain system has the dual advantages of distributed drive and hybrid drive, and the power output of each drive shaft of the tractor is decoupled. The optimized tractor has a better energy-saving effect and more drive modes. This paper provides the theoretical basis for the architecture design of a tractor powertrain system, and the distributed hybrid electric tractor system architecture can provide a new idea for the efficient operation of tractors.

Key words: agricultural engineering, hybrid electric tractor, TRIZ theory, powertrain system, optimization design

CLC Number: 

  • S219

Fig.1

Original tractor"

Table 1

Main parameters of original tractor"

参数数值
整机质量/kg1 050
轴距/mm1 445
外形尺寸/(mm×mm×mm)2 650×12 00×1 300
发动机减速比7.72/11.77/24.35/26.06/37.55/38.32/85.69
前轮半径/mm260
后轮半径/mm500
电机功率/kW7.5
电机额定转矩/(N·m-125.4
电机额定转速/(r·min-11 500
电池容量/(A·h)95

Fig.2

Problem-solving process of TRIZ theory"

Fig.3

"Substance-field model" analysis of short endurance problem system"

Fig.4

"Substance-field model" analysis of insufficient driving force problem system"

Fig.5

"Substance-field model" analysis of the problem system of power interruption in gear shifting"

Fig.6

"Substance-field model" analysis of drive wheel slipping problem system"

Table 2

Conflict matrix of short endurance problem"

改善的

通用工

程参数

恶化的通用工程参数

1运动物体

的质量

7运动物体

的体积

26物质或事物的数量

25时间

损失

10预先作用

20有效作用的连续性

37热膨胀

35物理/化学参数变化

2抽取

5组合

34抛弃与再生

10预先作用

35物理/化学参数变化

38加速氧化

18机械振动

16部分超越

27可

靠性

3局部质量

8质量补偿

10预先作用

40复合材料

3局部质量

10预先作用

14曲面化

24中介物

21快速

28机械系统的替代

40复合材料

3局部质量

Table 3

Analysis and application of valuable invention principle of short endurance problem"

序号原理有价值内容详解对应难点技术手段
2抽取将物体中的关键部分挑选或分离出来拖拉机工作一定时长后,电量不足,无法及时充电抽取充电桩的充电功能
3局部质量使组成物体的每一部分都最大限度地发挥作用拖拉机应满足前桥配重要求将增置设备进行前移
5组合把时间上相同或类似的操作联合起来拖拉机必须转场才能进行充电将充电功能融入拖拉机内部以实现自主充电
10

预先

作用

预先对物体进行特殊安排,使其在时间上有准备或已处于易操作的位置在SoC低于一定值时,需估量作业场地与充电桩距离、转场所需电量,必须停止作业进行转场当SoC低于设定值时,发电装置给电池供电
20有效作用的连续性消除运动过程中的间歇拖拉机续航能力差,无法进行较长时间的持续作业保持电池可随时被供电

Fig.7

Powertrain structure improvement of short endurance problem system"

Table 4

Conflict matrix of insufficient driving forceproblem"

改善的

通用工

程参数

恶化的通用工程参数

19运动物体

消耗的能量

26物质或

事物的数量

36装置

的复杂性

27可靠性

21快速

11预先防范

27廉价替代品

19周期性作用

21快速

28机械系统的替代

40复合材料

3局部质量

13反向作用

35物理/化学参数变化

1分割

30物体外部有害因素作用的敏感性

1分割

24中介物

6多用性

27廉价代替品

35物理/化学参数变化

33同质性

29气压与液压结构

31多孔材料

22改变颜色

19周期性作用

29气压与液压结构

40复合材料

35适应性及多用性

19周期性作用

35物理/化学参数变化

29气压与液压结构

13反向作用

3局部质量

35物理/化学参数变化

15动态化

15动态化

29气压与液压结构

37热膨胀

28机械系统的替代

Table 5

Analysis and application of valuable invention principle of insufficient driving force problem"

序号原理有价值内容详解对应难点技术手段
6多用性使一个物体能发挥多项功能,可以减少原设计中完成这些功能的多个物体的数量根据3.1节所述,发动机仅为电池或电机进行供电拓展发动机用途,将发动机作为驱动轮动力输出端
15动态性使物体或其环境在操作的每一个阶段自动调整,以达到优化的性能拖拉机作业负载波动大,频繁调整挡位将造成动力损失合理匹配电机与发动机输出动力,保证经济性和动力性
33同质性采用相同或相似的物体制造与某物体相互作用的物体动力源仅驱动后轮,且动力不足利用前轮优势,将前桥从动轮改为驱动轮

Fig.8

Powertrain structure improvement of insufficient driving force problem"

Table 6

Conflict matrix of power interruption in gearshifting"

改善的通用

工程参数

恶化的通用工程参数
7运动物体的体积26物质或事物的数量
27可靠性

3局部质量

10预先作用

14曲面化

24中介物

21快速

28机械系统的替代

40复合材料

3局部质量

30物体外部有害因素作用的敏感性

22变害为利

23反馈

37热膨胀

35物理/化学参数变化

35物理/化学参数变化

33同质性

29气压与液压结构

31多孔材料

35适应性及多用性

15动态化

35物理/化学参数变化

29气压与液压结构

3局部质量

35物理/化学参数变化

15动态化

Table 7

Analysis and application of valuable invention principle of power interruption in gear shifting"

序号原理有价值内容详解对应难点技术手段
3局部质量使组成物体的每一部分都最大限度地发挥作用换挡过程中后轮驱动动力短暂中断,易造成二次启动困难充分发挥驱动前桥的作用,利用前桥的驱动力进行换挡动力补偿
15动态化使物体或其环境在操作的每一个阶段自动调整,以达到优化的性能拖拉机作业负载大部分情况下非定值,频繁地调整挡位会造成换挡动力损失合理匹配电机与发动机输出动力,保证经济性和动力性
33同质性采用相同或相似的物体制造与某物体相互作用的物体动力源仅驱动后轮,且动力不足利用前轮优势,将前轮从动轮改为驱动轮

Fig.9

Powertrain structure improvement of power interruption in gear shifting problem"

Table 8

Conflict matrix of drive wheel slipping problem"

改善的通用

工程参数

恶化的通用工程参数
26物质或事物的数量32可制造性
22能量损失

7嵌套

18机械振动

25自服务

31物体产生的有害因素

3局部质量

24中介物

39惰性环境

1分割

39生产率

35物理/化学参数变化

38加速氧化

35物理/化学参数变化

28机械系统的替代

2抽取

24中介物

Table 9

Analysis and application of valuable invention principle of drive wheel slipping problem"

序号原理有价值内容详解对应难点技术手段
1分割

用一个物体分成相互独立的部分;

增加物体被分割的程度

前轮为驱动轮,在极端情况下,同侧前后轮发生打滑时,前轮不能发挥拖曳作用两前轮独立驱动,前桥动力彻底解耦
2抽取将物体中的关键部分挑选或分离出来当后轮发生打滑,后轮驱动失效。此时拖拉机无法进行作业抽取后轮驱动功能,将驱动功能赋予前轮
3

局部

质量

使组成物体的每一部分都最大限度地发挥作用前轮驱动为保证附着力,需增加前桥配重将电池布置于前桥上方增加前桥配重要求
25自服务物体应当为自我服务,完成辅助和修理工作拖拉机驱动轮发生打滑,无法工作除滑转轮外,其余驱动轮进行驱动拖曳,使拖拉机脱离滑转区

Fig.10

Tractor powertrain structure diagram before and after optimization"

Fig.11

Force analysis of tractor ploughing operation"

Table 10

Main parameters of simulation"

参数优化前拖拉机数值优化后拖拉机数值
整机质量/kg1 0501 180
轴距/mm1 4451 445
前轮半径/mm260260
后轮半径/mm500500
尺寸(长×宽×高)/(mm×mm×mm)

2 650×1 200×

1 300

2 650×1 200×

1 300

发动机额定功率/kW/7.5
发动机最大转矩/ (N·m-1/30
变速箱速比7.72/11.77/24.35/26.06/38.32/85.697.72/11.77/24.35/26.06/38.32/85.69
电机额定功率/kW7.53.5
电机额定转矩/(N·m-125.414
电机减速机速比/20/10
电压/V7272
电池容量/(A·h)95100

Fig.12

Simulation conditions and results"

Table 11

Comparison of simulation results"

驱动形式总油耗量/LSoC最终值SoC下降量/%
优化前0.344 90.562 537.50
优化后(纯电前驱)0.253 60.679 624.49
优化后(混合四驱)0.573 50.699 822.24

Fig.13

Optimized 3D model of tractor"

Table 12

Tractor prototype drive performance parameters"

参数纯电驱动模式发动机驱动模式混合驱动模式
动力源电机发动机电机+发动机
驱动轮前轮后轮前轮+后轮

驱动力

范围/N

0~1 8620~4 5580~6 240

Fig.14

Traction resistance curve"

Fig.15

Ploughing test and ploughing effect"

Fig.16

Traction resistance and tractor speed"

Fig.17

Engine and motor power curves"

1 General Assembly UN. Transforming our world: the 2030 agenda for sustainable development(UN, 2015)[R/OL].[2015-12-20]. .
2 Pérez-Martínez P J. Energy consumption and emissions from the road transport in Spain: a conceptual approach[J]. Transport, 2012, 27(4): 383-396.
3 杨帆,翟志强,汪圆圆,等. 基于虚拟现实的拖拉机变速箱装配系统设计[J].吉林大学学报:工学版: 2023,53(10):3038-3044.
Yang Fan, Zhai Zhi-qiang, Wang Yuan-yuan, et al. Design of assembly system for tractor transmission based on virtual reality[J]. Journal of Jilin University (Engineering and Technology Edition),2023,53(10):3038-3044.
4 温昌凯,谢斌,宋正河,等. 拖拉机耐久性加速结构试验设计方法[J].吉林大学学报:工学版, 2022, 52(3): 703-715.
Wen Chang-kai, Xie Bin, Song Zheng-he, et al. Design method of tractor durability accelerated structure test[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3): 703-715.
5 秦嘉浩,李臻,光岡宗司,等. 基于模型实验的拖拉机配置对稳定性的影响差异[J].吉林大学学报:工学版, 2019, 49(4): 1236-1245.
Qin Jia-hao, Li Zhen, Muneshi Mitsuoka, et al. Significance variation of factorial effects on tractor stability employing scale-model-based experimental approach[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1236-1245.
6 邓晓亭. 混合动力拖拉机动力特性的研究[D].南京:南京农业大学工学院, 2012.
Deng Xiao-ting. Researches on dynamic characteristics of hybrid electric tractor[D]. Nanjing: College of Engineering, Nanjing Agricultural University, 2012.
7 Tretjakovas S, Girgždys A, Masilevičius R. The total ozone amount changes over Lithuania and neighbouring countries[J]. Journal of Environmental Engineering and Landscape Management, 2012, 20(2): 147-154.
8 Mekhilef S, Faramarzi Z, Saidur R, et al. The application of solar technologies for sustainable development of agricultural sector[J]. Renewable & Sustainable Energy Reviews, 2013, 18: 583-594.
9 段运红. 近距离感受约翰迪尔纯电动拖拉机[J].农业机械, 2017(4): 52.
Duan Yun-hong. Close experience of John Deere's pure electric tractor[J]. Farm Machinery, 2017(4): 52.
10 Melo R R, Antunes F L M, Daher S, et al. Conception of an electric propulsion system for a 9 kW electric tractor suitable for family farming[J]. IET Electric Power Applications, 2019, 13(12): 1993-2004.
11 Xie B, Zhang C, Chen S, et al. Transmission performance of two-wheel drive electric tractor[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(6):8-13.
12 Osinenko P, Streif S. Optimal traction control for heavy-duty vehicles[J]. Control Engineering Practice, 2017, 69:99-111.
13 Hofste D. Twee concepten van Een elektrische tractor die in lijn zijn met het huidige model van de multi tool trac[D]. Enschede: University of Twente, 2015.
14 徐立友,刘孟楠,周志立. 串联式混合动力拖拉机驱动系设计[J].农业工程学报, 2014, 30(9): 11-18.
Xu Li-you, Liu Meng-nan, Zhou Zhi-li. Design of drive system for series hybrid electric tractor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9): 11-18.
15 周志立,倪倩,徐立友. 并联混合动力拖拉机传动系参数设计及性能分析[J].河南科技大学学报:自然科学c版, 2016, 37(6): 9-15,4-5.
Zhou Zhi-li, Ni Qian, Xu Li-you. Design and performance analysis of parallel hybrid electric tractor transmission parameters[J]. Journal of Henan University of Science and Technology(Natural Science), 2016, 37(6): 9-15,4-5.
16 杨友胜,唐顺军,王晓东,等. 基于TRIZ理论的深海水液压电磁阀[J].机械工程学报, 2019, 55(16): 205-212.
Yang You-sheng, Tang Shun-jun, Wang Xiao-dong, et al. Deep-sea water hydraulic solenoid valves based on TRIZ theory[J]. Journal of Mechanical Engineering, 2019, 55(16): 205-212.
17 马赛,李凤鸣,钱旺. 基于TRIZ理论的D型打结器设计与试验[J].农业机械学报, 2018, 49(): 327-331.
Ma Sai, Li Feng-ming, Qian Wang. Design of D-type knotter based on TRIZ theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(Sup.1): 327-331.
18 Chou J R. A TRIZ-based product-service design approach for developing innovative products[J]. Computers & Industrial Engineering, 2021, 161:No. 107608.
19 李金凤,赵继云,侯秀宁,等. 采用TRIZ理论的豌豆割晒机械装备设计与试验[J].农业工程学报, 2020, 36(8): 11-20.
Li Jin-feng, Zhao Ji-yun, Hou Xiu-ning, et al. Design and experiment of pea windrower equipment with TRIZ theory[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(8): 11-20.
20 于振环,刘顺安,张娜.基于TRIZ理论提高车辆转弯工况下的稳定性[J].吉林大学学报:工学版, 2014, 44(2): 325-329.
Yu Zhen-huan, Liu Shun-an, Zhang Na. Stability of vehicles' cornering case based on TRIZ theory[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(2): 325-329.
21 朱天明,武春龙,周有城,等. 基于TRIZ功能建模的扩展碰撞预警系统数字孪生概念方案构建[J]. 计算机集成制造系统, 2021, 27(2): 337-351.
Zhu Tian-ming, Wu Chun-long, Zhou You-cheng, et al. Construction of extended collision warning system digital twin conceptual scheme based on TRIZ functional modeling[J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 337-351.
22 孙琳琳,孔繁森.基于感性工学和TRIZ理论的汽车座椅视觉舒适度设计[J].吉林大学学报:工学版, 2014, 44(1): 106-110.
Sun Lin-lin, Kong Fan-sen. Visual comfort design of automobile seat based on kansei engineering and TRIZ theory[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1): 106-110.
23 Sharaf H K, Ishak M R, Sapuan S M, et al. Conceptual design of the cross-arm for the application in the transmission towers by using TRIZ-morphological chart-ANP methods[J]. Journal of Materials Research and Technology, 2020, 9(4): 9182-9188.
24 楼炯炯,桂方志,任设东,等.基于可拓创新方法的改进TRIZ研究[J].计算机集成制造系统, 2018, 24(1): 127-135.
Lou Jiong-jiong, Gui Fang-zhi, Ren She-dong, et al. Improved TRIZ based on extension innovation method[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 127-135.
25 权龙哲,曾百功,马云海,等.基于TRIZ理论的玉米根茬收获系统设计[J].农业工程学报, 2012, 28(23): 26-32.
Quan Long-zhe, Zeng Bai-gong, Ma Yun-hai, et al. Design of corn stubble harvester based on TRIZ theory[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23): 26-32.
26 夏文涵,王凯,李彦,等.基于TRIZ的管道机器人自适应检测模块创新设计[J].机械工程学报, 2016, 52(5): 58-67.
Xia Wen-han, Wang Kai, Li Yan, et al. Innovative design for adaptive detection module of in-pipe robot based on TRIZ[J]. Journal of Mechanical Engineering, 2016, 52(5): 58-67.
27 刘江南,姜光,卢伟健,等.TRIZ工具集用于驱动产品创新及生态设计方法研究[J].机械工程学报, 2016, 52(5): 12-21.
Liu Jiang-nan, Jiang Guang, Lu Wei-jian, et al. Driving innovative and ecological design of product development by utilizing TRIZ tools[J]. Journal of Mechanical Engineering, 2016, 52(5): 12-21.
28 Delgado-Maciel J, Cortés-Robles G, Sánchez-Ramírez C, et al. The evaluation of conceptual design through dynamic simulation: a proposal based on TRIZ and system dynamics[J]. Computers & Industrial Engineering, 2020, 149: No.106785.
29 曹卫彬,焦灏博,刘姣娣,等.基于TRIZ理论的红花丝盲采装置设计与试验[J].农业机械学报, 2018, 49(8): 76-82.
Cao Wei-bin, Jiao Hao-bo, Liu Jiao-di, et al. Design of safflower filament picking device based on TRIZ theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 76-82.
30 尹建坤. 基于混合动力轿车实际工况的电机参数匹配与试验方法研究[D]. 长春:吉林大学汽车工程学院, 2012.
Yin Jian-kun. Study on parameters matching and test methods for the hybrid electric car based the real drive cycle[D]. Changchun: College of Automotive Engineering, Jilin University, 2012.
31 张哲. 基于效率优化的整车转矩分配方法的研究[D]. 长春:长春工业大学机电工程学院, 2015.
Zhang Zhe. Research on torque distribution of hybrid electric vehicle based on efficiency optimal[D]. Changchun: College of Mechanical and Electrical Engineering, Changchun University of Technology, 2015.
32 窦聪. 电-电混合纯电动汽车整车控制器的开发[D].合肥:合肥工业大学汽车与交通工程学院,2013.
Dou Cong. The development of vehicle control unit for electric vehicles with battery-ultracapacitor dual energy sources[D]. Hefei: School of Automotive and Transportation Engineering, Hefei University of Technology, 2013.
[1] Yan-an ZHANG,Yue-feng DU,Qing-feng MENG,Xiao-yu LI,Lei LIU,Zhong-xiang ZHU. Adaptive control of wet clutch pressure based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 852-864.
[2] Mao-jian ZHANG,Jing-fu JIN,Yi-ying CHEN,Ting-kun CHEN. Vibration symmetry characteristics of wheeled tractor structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2136-2142.
[3] Chang-kai WEN,Bin XIE,Zheng-he SONG,Jian-gang HAN,Qian-wen YANG. Design method of tractor durability accelerated structure test [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 703-715.
[4] Jia⁃hao QIN,Zhen LI,Muneshi MITSUOKA,Eiji INOUE,Zheng⁃he SONG,Zhong⁃xiang ZHU. Significance variation of factorial effects on tractor stability employing scale⁃model⁃based experimental approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1236-1245.
[5] YIN Yong-guang,ZHANG Tie-hua,LIU Jing-bo,ZHUANG Hong,YAN Hai-yang,CHEN Yu-jiang,ZHANG Ting . Effect on antibacterial activity of lysozyme in highintensity pulsed electric fields (PEF) [J]. 吉林大学学报(工学版), 2008, 38(06): 1485-1488.
[6] ZHU Feng-wu, TONG Jin. Development of high-efficient and energy-saving bionic bubsoiling techniques [J]. 吉林大学学报(工学版), 2003, (2): 95-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!