Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (3): 852-864.doi: 10.13229/j.cnki.jdxbgxb.20220991

Previous Articles    

Adaptive control of wet clutch pressure based on improved genetic algorithm

Yan-an ZHANG(),Yue-feng DU,Qing-feng MENG,Xiao-yu LI,Lei LIU,Zhong-xiang ZHU   

  1. College of Engineering,China Agricultural University,Beijing 100083,China
  • Received:2022-07-29 Online:2024-03-01 Published:2024-04-18

Abstract:

Aiming to improve the accuracy of wet clutch pressure control of tractor power shift transmission (PST), a model-free adaptive control method for wet clutch pressure based on improved genetic algorithm is proposed. Firstly, the mathematical model of the wet clutch hydraulic system was analyzed and established, and the clutch pressure controller was constructed based on the partial form dynamic linearization based model free adaptive control (PFDL-MFAC) algorithm. Then, the variable-proportion elite retention strategy, K-means clustering algorithm and catastrophe strategy were introduced to improve the genetic algorithm, and a PFDL-MFAC controller parameter tuning method based on sensitivity analysis and improved genetic algorithm was proposed. Finally, the clutch pressure control test based on the tractor transmission control unit (TCU) hardware-in-the-loop test platform was carried out. The results show that the improved genetic algorithm has better convergence speed and optimization accuracy. Compared with PID, PFDL-MFAC has faster clutch pressure response and better robustness, which can meet the requirements of tractors. At the same time, the shifting quality of the transmission based on the algorithm in this paper is better. The research results provide a basis for improving the shifting quality of power-shift tractors.

Key words: agricultural engineering, tractor, wet clutch, model free adaptive control, genetic algorithm

CLC Number: 

  • S219.032.1

Fig.1

Basic structure of clutch hydraulic system"

Fig.2

K-means clustering algorithm calculation steps"

Fig.3

Catastrophe operation process"

Fig.4

Improved genetic algorithm process"

Fig.5

Tractor TCU hardware-in-the-loop test platform"

Table 1

Main parameters of the proportional pressure reducing valve and clutch"

变 量参数
供油压力ps/Pa2×106
油液密度ρ/(kg·m-3900
等效体积弹性模量βe/Pa1.7×109
比例减压阀节流孔数量nv6
比例减压阀节流孔直径d/m0.003
比例减压阀阀芯质量mv/kg0.015
比例减压阀回位弹簧刚度kv/(N·m-12000
比例减压阀回位弹簧初始位移xv0/m0.001
比例减压阀反馈腔阻尼孔直径df/m0.005
比例减压阀反馈腔初始容积Vf0/m38.92×10-7
比例减压阀主腔容积Vv/m34×10-5
离合器油缸进油口直径dL/m0.0035
活塞等效质量mL/kg0.65
活塞回位弹簧刚度KL/(N·m-1104 500
活塞回位弹簧预压力FL0/N3094
活塞外半径R2/m0.07
活塞内半径R1/m0.035
摩擦片等效刚度Kn/(N·m-11.6134×108
摩擦片Kisspoint点Δ/m0.004

Fig.6

Schematic diagram of power shift transmission"

Fig.7

Powershift tractor dynamics model"

Fig.8

Cumulative frequency distribution curve"

Table 2

Sensitivity analysis results"

参数DS

不灵敏参数

取值

参数DS

不灵敏参数

取值

λ0.99620.6ε10.99870.56
μ0.99130.012ε20.99800.95
η0.99452α0.99781.50
ρ10.7364-W1(0)0.6329-
ρ20.93330.15W2(0)0.6748-
ρ30.96250.15W3(0)0.94520.01

Fig.9

Fitness curves"

Fig.10

Following test results of square wave pressure"

Fig.11

Following test results of sine wave pressure"

Fig.12

Shift test results"

1 Zhao Jing, Xiao Mao-hua, Bartos P, et al. Dynamic engagement characteristics of wet clutch based on hydro-mechanical continuously variable transmission[J]. Journal of Central South University, 2021, 28(5): 1377-1389.
2 刘永刚, 张静晨, 万有刚, 等. 基于知识的双离合器自动变速器换挡智能控制[J]. 机械工程学报, 2021, 57(17): 185-195.
Liu Yong-gang, Zhang Jing-chen, Wan You-gang, et al. Intelligent knowledge-based shifting control of dual clutch transmission[J]. Journal of Mechanical Engineering, 2021, 57(17): 185-195.
3 席志强. 拖拉机动力换挡变速器控制系统研究[D]. 西安: 西安理工大学机械与精密仪器工程学院, 2016.
Xi Zhi-qiang. Study on control system of tractor powershift transmission[D]. Xi'an: School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, 2016.
4 杨猛. 拖拉机动力换挡变速器换挡品质优化与控制研究[D]. 合肥: 合肥工业大学汽车与交通工程学院, 2020.
Yang Meng. Research on optimal of shifting quality and control of tractor power shift transmission[D]. Hefei: School of Automotive and Transportation Engineering, Hefei University of Technology, 2020.
5 刘玺, 程秀生, 冯巍. 湿式双离合器自动变速器换挡最优控制[J]. 农业工程学报, 2011, 27(6): 152-156.
Liu Xi, Cheng Xiu-sheng, Feng Wei. Optimal control of gearshift in wet dual-clutch automatic transmission[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 152-156.
6 杜岳峰, 傅生辉, 毛恩荣, 等. 农业机械智能化设计技术发展现状与展望[J]. 农业机械学报, 2019, 50(9): 1-17.
Du Yue-feng, Fu Sheng-hui, Mao En-rong, et al. Current status and prospects of intelligent design technology for agricultural machinery[J]. Journal of Agricultural Machinery, 2019, 50(9): 1-17.
7 闫祥海. 拖拉机动力换挡传动系虚拟试验关键技术研究[D]. 洛阳: 河南科技大学车辆与交通工程学院, 2020.
Yan Xiang-hai. Research on the key technologies of virtual test of tractor powershift transmission[D]. Luoyang: College of Vehicle and Traffic Engineering, Henan University of Science and Technology, 2020.
8 马彪, 李国强, 李和言, 等. 基于改进平均流量模型的离合器接合特性仿真[J]. 吉林大学学报: 工学版, 2014, 44(6): 1557-1563.
Ma Biao, Li Guo-qiang, Li He-yan, et al. Simulation of wet clutch engagement characteristics based on advanced average flow model[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1557-1563.
9 Balau A E, Lazar C. State-space model of an electro-hydraulic actuated wet clutch[J]. IFAC Proceedings Volumes, 2010, 43(7): 506-511.
10 Ouyang T, Li S, Huang G, et al. Mathematical modeling and performance prediction of a clutch actuator for heavy-duty automatic transmission vehicles[J]. Mechanism and Machine Theory, 2019, 136: 190-205.
11 曾云鹏. 湿式离合器系统建模及压力控制研究[D]. 长春: 吉林大学汽车工程学院, 2021.
Zeng Yun-peng. Research on modeling and pressure control of wet clutch system[D]. Changchun: College of Automotive Engineering, Jilin University, 2021.
12 张银涛. 湿式双离合器自动变速器液压控制系统仿真研究与分析[D]. 广州: 华南理工大学机械与汽车工程学院, 2020.
Zhang Yin-tao. Simulation research and analysis on hydraulic control system of wet dual clutch transmission[D]. Guangzhou: School of Mechanical & Automotive Engineering, South China University of Technology, 2020.
13 邱明明. 考虑动态特性的DCT双离合器接合过程多滑模控制方法研究[D]. 合肥: 合肥工业大学汽车与交通工程学院, 2015.
Qiu Ming-ming. Study on multiple sliding mode control method for DCT dual clutch engagement with dynamic characteristics[D]. Hefei: School of Automotive and Transportation Engineering, Hefei University of Technology, 2015.
14 于鸿昶, 刘奇芳, 陈虹. DCT离合器电液控制阀的非线性压力控制[J]. 吉林大学学报: 信息科学版, 2014, 32(5): 484-492.
Yu Hong-chang, Liu Qi-fang, Chen Hong. Nonlinear pressure control for clutch electro-hydraulic control valve of DCT[J]. Journal of Jilin University (Information Science Edition), 2014, 32(5): 484-492.
15 Hu H, Wu H, Zhang Z, et al. Research on trajectory tracking control for wet clutch engagement based on SMC[J]. Procedia Engineering, 2011, 15: 2742-2746.
16 傅生辉, 顾进恒, 李臻, 等. 基于MFAPC的动力换挡变速箱湿式离合器压力控制方法[J]. 农业机械学报, 2020, 51(12): 367-376.
Fu Sheng-hui, Gu Jin-heng, Li Zhen, et al. Pressure control method of wet clutch for PST of high-power tractor based on MFAPC algorithm[J]. Journal of Agricultural Machinery, 2020, 51(12): 367-376.
17 赵栩杨, 卜旭辉, 余威, 等. 拒绝服务攻击下的MIMO非线性系统无模型自适应控制[J]. 控制理论与应用, 2022, 39(2): 373-382.
Zhao Xu-yang, Bu Xu-hui, Yu Wei, et al. Model free adaptive control for MIMO nonlinear systems under Denial-of-Service attacks[J]. Control Theory & Applications, 2022, 39(2): 373-382.
18 姚文龙, 亓冠华, 池荣虎, 等. 具有未知负载扰动的水井钻机电液伺服系统无模型自适应控制[J]. 控制理论与应用, 2022, 39(2): 231-240.
Yao Wen-long, Qi Guan-hua, Chi Rong-hu, et al. Model-free adaptive control for water well drilling rig electro-hydraulic servo with unknown load disturbance[J]. Control Theory & Applications, 2022, 39(2): 231-240.
19 魏立新, 赵默林, 范锐, 等. 基于改进鲨鱼优化算法的自抗扰控制参数整定[J]. 控制与决策, 2019, 34(4): 816-820.
Wei Li-xin, Zhao Mo-lin, Fan Rui, et al. Parameter tuning of active disturbance rejection control based on ameliorated shark smell optimization algorithm[J]. Control and Decisions, 2019, 34(4): 816-820.
20 王立平, 孔祥昱, 于广. 基于遗传算法的并混联机床电机伺服控制参数整定[J]. 清华大学学报: 自然科学版, 2021, 61(10): 1106-1114.
Wang Li-ping, Kong Xiang-yu, Yu Guang. Motor servo control parameter tuning for parallel and hybrid machine tools based on a genetic algorithm[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(10): 1106-1114.
21 王素珍, 辛诚, 孙国法. 连续搅拌反应釜的自适应输出反馈控制及参数整定[J]. 控制理论与应用, 2021, 38(10): 1587-1596.
Wang Su-zhen, Xin Cheng, Sun Guo-fa. Adaptive output feedback control and parameter tuning for continuous stirred tank reactor[J]. Control Theory & Applications, 2021, 38(10): 1587-1596.
22 胡黄水, 赵思远, 刘清雪, 等. 基于动量因子优化学习率的BP神经网络PID参数整定算法[J]. 吉林大学学报: 理学版, 2020, 58(6): 1415-1420.
Hu Huang-shui, Zhao Si-yuan, Liu Qing-xue, et al. BP network PID parameter tuning algorithm based on momentum factor optimized learning rate[J]. Journal of Jilin University (Science Edition), 2020, 58(6): 1415-1420.
23 商晓波. 湿式离合器接合过程理论分析及试验研究[D]. 杭州: 浙江大学机械工程学院,2019.
Shang Xiao-bo. Theoretical analysis and experimental study on engagement process of wet clutch[D]. Hangzhou: School of Mechanical Engineering, Zhejiang University, 2019.
24 侯忠生, 金尚泰. 无模型自适应控制——理论与应用[M]. 北京: 科学出版社, 2013.
25 王海, 刘根锋, 侯忠生. 高速列车数据驱动无模型自适应容错控制[J]. 控制与决策, 2022, 37(5): 1127-1136.
Wang Hai, Liu Gen-feng, Hou Zhong-sheng. Data-driven model-free adaptive fault tolerant control for high-speed trains[J]. Control and Decisions, 2022, 37(5): 1127-1136.
26 徐立友, 刘海亮, 周志立, 等. 拖拉机双离合器自动变速器换挡品质评价指标[J]. 农业工程学报, 2015, 31(8): 48-53.
Xu Li-you, Liu Hai-liang, Zhou Zhi-li, et al. Evaluation indexes of shifting quality for dual clutch transmission for tractor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 48-53.
[1] Xin YANG,Yang WANG,Jia-feng SONG,Yong ZHU,Bin-bing HUANG,Shu-cai XU. Design and numerical simulation of bionic sandwich panel based on a shrimp chela structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 842-851.
[2] Xue-shen CHEN,Yue-song XIONG,Nan CHENG,Xu MA,Long QI. Adaptive vibration type flexible mechanical weeding test between rice plants [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 375-384.
[3] Yong-shuo WANG,Jian-ming KANG,Qiang-ji PENG,Ying-kai CHEN,Hui-min FANG,Meng-meng NIU,Shao-wei WANG. Design and experiment of obstacle avoidance weeding machine for fruit trees [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2410-2420.
[4] Chang-jiang ZHENG,Huan HU,Mu-qing DU. Design of multimodal express delivery network structure considering hub failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2304-2311.
[5] Xiao-jun JIN,Yan-xia SUN,Jia-lin YU,Yong CHEN. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2421-2429.
[6] Guo-hong TIAN,Peng-jie DAI. Active collision avoidance method of driverless vehicle based on partheno genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2404-2409.
[7] Feng LYU,Nian LI,Zhuang-zhuang FENG,Yang-hang ZHANG. Method of collaborative filtering recommendation of personalized product-service system based on user [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1935-1942.
[8] Ying-xin HUI,Jia-wei CHEN. Squeezed branch pile groups optimization method based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2089-2098.
[9] Mao-jian ZHANG,Jing-fu JIN,Yi-ying CHEN,Ting-kun CHEN. Vibration symmetry characteristics of wheeled tractor structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2136-2142.
[10] Yan-bo LI,Bai-song LIU,Bo-bin YAO,Jun-shuo CHEN,Kai-fa QU,Qi-sheng WU,Jie-ning CAO. Location of electrical changing station of expressway considering stochastic characteristics of road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1364-1371.
[11] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Multi⁃objective optimization of macro parameters of helical gear based on NSGA⁃Ⅱ [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1007-1018.
[12] Min MA,Da-wei HU,Lan SHU,Zhuang-lin MA. Resilience assessment and recovery strategy on urban rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 396-404.
[13] Pei-ran YING,Xiao-qing ZENG,Tuo SHEN,Teng-fei YUAN,Hai-feng SONG,Yi-zeng WANG. Redundant operation code-based intelligent algorithm for energy⁃efficient driving of high-speed train [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3404-3414.
[14] Li-bin ZHANG,Shi-yuan FENG,Hong-ying SHAN,Guan-ran WANG. Braking timing detection of tractor⁃trailer⁃train based on tire slip rate and monocular vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3415-3423.
[15] Jin-song ZHU,Ya-ting QIN,Zhou-qiang LIU. Section optimization design of prestressed UHPC-NC composite beams [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3151-3159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!