Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1722-1727.doi: 10.13229/j.cnki.jdxbgxb.20240294

Previous Articles     Next Articles

Nonlinear active noise control algorithm based on weighted optimization AF

Nan-nan ZHAO1(),Feng JIN2,Hong-yu DING3   

  1. 1.School of Computer Science and Engineering,Guangdong Ocean University,Yangjiang 529500,China
    2.Test Training Base National University of Defense Technology,Xi'an 710106,China
    3.School of Mechanical and Energy Engineering,Guangdong Ocean University,Yangjiang 529500,China
  • Received:2024-03-22 Online:2025-05-01 Published:2025-07-18

Abstract:

Nonlinear noise generally has high uncertainty, difficult to accurately describe spectral characteristics, large steady-state errors, and poor transient performance. Effective control of nonlinear noise is a challenging task. Therefore, a nonlinear active noise control algorithm based on weight optimization AF is proposed. This algorithm uses the sine and cosine components of the reference signal for direct frequency analysis, analyzes the primary noise and narrowband frequency range, obtains accurate noise estimation results, and improves the accuracy and effectiveness of noise control. By training the results of nonlinear active noise estimation and adjusting the weights of the adaptive filter, the reconstruction of the expected output signal is achieved, effectively suppressing the influence of nonlinear noise and improving the control effect. The experimental results show that under this algorithm, the mean square error of signal noise is low and the steady-state error is small, which can adapt to various complex noise environments and effectively improve the quality of noise control, it has high practicality and reliability.

Key words: weight optimization, adaptive filter, narrowband noise, noise estimation, nonlinear active noise

CLC Number: 

  • TP273

Fig.1

Adaptive filter structure diagram"

Fig.2

Mean square error curve of harmonic signal noise before and after control by the proposed algorithm"

Fig.3

R1 variation curve of harmonic signal under the control of the proposed algorithm"

Fig.4

R2 variation curve of harmonic signal under the control of the proposed algorithm"

Fig.5

Mean squared error curve of low-pass signal noise before and after control by the proposed algorithm"

Fig.6

R1 variation curve of low-pass signal under the control of the proposed algorithm"

Fig.7

R2 variation curve of low-pass signal under the control of the proposed algorithm"

[1] Lasota A, Meller M.Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise[J]. IET Signal Processing, 2020, 14(8): 560-568.
[2] 肖玮, 刘思蔚, 唐宇龙, 等. 基于对称非线性函数的变步长LMS自适应滤波算法[J]. 火力与指挥控制,2023, 48(2): 66-72.
Xiao Wei, Liu Si-wei, Tang Yu-long, et al. Variable step size LMS adaptive filtering algorithm based on the symmetric nonlinear function[J]. Fire Control & Command Control, 2023, 48(2): 66-72.
[3] Dongwook K, Vignesh S, Hyunkee K, et al. Development of active noise control simulation with virtual controller based on computational aeroacoustics[J].The Journal of the Acoustical Society of America, 2023, 153(5):2789-2802.
[4] 夏婷, 谢维信, 陈富健, 等. 基于核相关滤波器的高置信度自适应融合目标跟踪算法研究[J]. 信号处理,2021, 37(4): 669-679.
Xia Ting, Xie Wei-xin, Chen Fu-jian, et al. Research on high-confidence adaptive fusion target tracking algorithm based on kernel correlation filter[J]. Journal of Signal Processing, 2021, 37(4): 669-679.
[5] 吕收, 李居伟, 郭昕钰. 基于FXLMS算法的直升机旋翼主动噪声控制的研究[J]. 电子技术应用, 2023,49(5): 99-104.
Shou Lyu, Li Ju-wei, Guo Xin-yu. Research on active noise control of helicopter rotor based on FXLMS algorithm [J]. Application of Electronic Technique, 2023,49(5): 99-104.
[6] 卢炽华, 吴方博, 刘志恩, 等. 液压挖掘机驾驶舱窄带主动噪声控制研究[J]. 西安交通大学学报, 2022,56(11): 167-175.
Lu Chi-hua, Wu Fang-bo, Liu Zhi-en, et al. Research on narrowband active noise control in the hydraulic excavator cabin [J]. Journal of Xi'an Jiaotong University, 2022, 56(11): 167-175.
[7] Lu L, Yang X, Zhu G, et al. Conjugate gradient-based FLANN algorithms in nonlinear active noise control[J]. Journal of the Franklin Institute, 2022, 359(9): 4468-4488.
[8] 王智豪, 徐中明, 夏子恒, 等. 路面冲击输入下车内噪声主动控制[J]. 汽车工程, 2023, 45(1): 119-127.
Wang Zhi-hao, Xu Zhong-ming, Xia Zi-heng, et al. Active control of road noise in vehicles running on impulsive road[J]. Automotive Engineering, 2023, 45(1): 119-127.
[9] Muhammad, Lim C W, Yaw Z,et al. Periodic and aperiodic 3-D composite metastructures with ultrawide bandgap for vibration and noise control[J]. Composite Structures, 2022, 287(5): 1153241.
[10] 尹智帅, 何嘉雄, 聂琳真, 等. 基于优化算法的自动驾驶车辆纵向自适应控制[J]. 系统仿真学报, 2021,33(2): 409-420.
Yin Zhi-shuai, He Jia-xiong, Nie Lin-zhen, et al. Longitudinal adaptive control of autonomous vehicles base on optimization algorithm [J]. Journal of System Simulation, 2021,33(2): 409-420.
[11] 火元莲, 丁瑞博, 齐永锋, 等. 基于混合熵的分数阶归一化子带自适应滤波算法[J]. 北京邮电大学学报,2023, 46(5): 28-34.
Huo Yuan-lian, Ding Rui-bo, Qi Yong-feng, et al. Fractional normalized subband adaptive filtering algorithm based on mixture correntropy [J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(5): 28-34.
[12] Drant J, Micheau P, Berry A. Active noise control of higher modes in a duct using near field compensation and a ring of harmonic acoustic pneumatic sources[J]. Applied Acoustics, 2022, 188(1): 108583.
[13] 阙鸿杰, 全力, 张丽, 等. 基于自适应滤波器在线解耦的磁场增强型永磁电机无位置传感器控制[J]. 电工技术学报, 2022, 37(2): 344-354.
Que Hong-jie, Quan Li, Zhang Li, et al. Sensorless control of flux-intensifying permanent magnet synchronous motor based on adaptive notch filter online decoupling[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 344-354.
[14] 李帅永, 谢现乐, 毛文平, 等. 基于变分贝叶斯双尺度自适应时变噪声容积卡尔曼滤波的同步定位与建图算法[J]. 电子与信息学报, 2023, 45(3): 1006-1014.
Li Shuai-yong, Xie Xian-le, Mao Wen-ping, et al. Simultaneous localization and mapping based on variational Bayses double-scale adaptive time-varying noise cubature Kalman filter[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1006-1014.
[15] 李涛, 贺钰瑶, 王宁, 等. 基于前馈信号参考的可变收敛列车噪声主动控制算法[J]. 机车电传动, 2022(1): 25-30.
Li Tao, He Yu-yao, Wang Ning, et al. Variable convergence train noise active control algorithm based on feedforward reference [J]. Electric Drive for Locomotives, 2022(1): 25-30.
[1] Lin LIU,Yan-jun REN,Tong SHEN,Guo-dong YIN,You-jing ZHANG. Electric vehicle ramp recognition based on fusion of vehicle mass estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 846-856.
[2] ZHUGE Jing-chang, WU Jun, ZHAN Xiang-lin, YU Zhi-jing. Precise ultrasonic ranging method based on self-adaptive wavelet de-noising [J]. 吉林大学学报(工学版), 2017, 47(4): 1301-1307.
[3] ZOU Ling, HE Qian-hua, KUANG Xi-chao, LI Hong-tao, CAI Zi-wen. Source recording device recognition based on device noise estimation [J]. 吉林大学学报(工学版), 2017, 47(1): 274-280.
[4] SUN Shu-qin, MENG Qing-yun, FANG Xiu-cheng, LIN Jun, WANG Ying-ji, TIAN Bao-feng, YANG Nan. Noise cancellation algorithm for surface magnetic resonance signals based on self-adaption and reconstruction of wavelet modulus maximum value [J]. 吉林大学学报(工学版), 2015, 45(5): 1642-1651.
[5] LI Yu-chen, LI Zhan-ming. Adaptive unscented particle filter algorithm under unknown noise [J]. 吉林大学学报(工学版), 2013, 43(04): 1139-1145.
[6] Yao Jian-jun, Cong Da-cheng, Jiang Hong-zhou, Wu Zhen-shun, Han Jun-wei . ANNbased adaptive phase corrector applied in electro-hydraulic servo system [J]. 吉林大学学报(工学版), 2007, 37(04): 930-934.
[7] AN Dexi, ZHOU Donghua. Robust adaptive smoothing algorithm for nonlinear stochastic systems [J]. 吉林大学学报(工学版), 2004, (3): 433-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. 吉林大学学报(工学版), 2005, 35(03): 306 -309 .
[2] ZHOU Ping,GUO Wei,SHEN Guo-zhe,HU Ping. Trimming springback algorithm in thin sheet forming simulation[J]. 吉林大学学报(工学版), 2010, 40(04): 931 -0936 .
[3] MA Ping,WANG Song-yan,QIN Li, YANG Ming. Cerebellar model articulation controller (CMAC) for antenna pointing and tracking system[J]. 吉林大学学报(工学版), 2010, 40(04): 1091 -1095 .
[4] XU Tao, ZHAO Shi-jia, ZHANG Wei, TAN Li-hui, LV Gang, LI Heng. Perturbed origin shift combined approximation method of N repeated defective systems[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 147 -150 .
[5] LIAO Jun-hong, SHAO Chun-fu, WU Hong-bo, SUN Yi-xuan, WANG Shu-ling. Calculation and assessment technique of highway 3D dynamic sight distance[J]. 吉林大学学报(工学版), 2013, 43(03): 640 -645 .
[6] LIU Jun-zhe, YUAN Wei-jing, HE Zhi-min, BA Ming-fang, CHEN Jian-bin. Influence of carbonation on alkali-aggregate reaction in concrete[J]. 吉林大学学报(工学版), 2015, 45(3): 783 -787 .
[7] YAN Ya-bin, WANG Xiao-yuan, WAN Qiang. Low-cycle fatigue fracture behavior of nanoscale interface[J]. 吉林大学学报(工学版), 2017, 47(4): 1201 -1206 .
[8] LIU Xiang-yu, YANG Qing-fang, KUI Hai-lin. Traffic guidance cell division based on random walk algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1380 -1386 .
[9] Li Jia-fei,Liu Da-you,Yu Wan-jun . Process mining algorithm to discover duplicate tasks[J]. 吉林大学学报(工学版), 2007, 37(01): 106 -110 .
[10] L Yi-sheng, OU Yan,TANG Shu-ming|ZHU Feng-hua, ZHAO Hong-xia. Computational experiments of evaluating road network traffic conditions based on artificial transportation systems[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 87 -0090 .