吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1301-1307.doi: 10.13229/j.cnki.jdxbgxb201704041

• Orginal Article • Previous Articles     Next Articles

Precise ultrasonic ranging method based on self-adaptive wavelet de-noising

ZHUGE Jing-chang1, WU Jun2, ZHAN Xiang-lin1, YU Zhi-jing1   

  1. 1.College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China;
    2.School of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
  • Received:2016-03-10 Online:2017-07-20 Published:2017-07-20

Abstract: The ranging accuracy of an ultrasonic ranging system depends on how to extract the time of flight of ultrasonic pulse exactly. Therefore, the de-noising method for ultrasonic receiving signals plays an important role in high precise ultrasonic ranging system. Traditional de-noising methods can not automatically adjust their de-noising threshold and wavelet layers due to the fixed model, which limits their use in different environment. In order to improve the efficiency of the de-noising method for ultrasonic receiving signals, a self-adaptive wavelet de-noising method is proposed. This method can automatically choose the optimal wavelet parameters through real-timely extracting the characteristics of the noise in received signals. Then, the time of flight measurement accuracy can significantly increased by improving the signal-to-noise ratio of the ultrasonic received signals. Verification experiments show that the measurement error is less than 0.28 mm in indoor environment, which meets most of distance measurement requirement for industrial manufacturing.

Key words: information processing, ultrasonic ranging, self-adaptive filter, threshold adjustment

CLC Number: 

  • TH915.05
[1] Kim S Y, Yoon K S, Lee D H, et al. The localization of a mobile robot using a pseudolite ultrasonic system and a dead reckoning integrated system[J]. International Journal of Control, Automation and Systems,2011,9(2):339-347.
[2] Wibowo A, Sutikno S, Kushartantya K, et al. Parallel cascade fuzzy inference system at the environment changes, case study: automated guide vehicle robot using ultrasonic sensor[C]//International Conference on Advanced Computer Science and Information Systems (ICACSIS), Jakarta, Indonesia,2012:319-324.
[3] 张凯渊, 刘佩林, 钱久超, 等. 多传感器融合机器人室内定位系统设计与实现[J]. 信息技术, 2014(11):83-87.
Zhang Kai-yuan, Liu Pei-lin, Qian Jiu-chao, et al. Design and implementation of multi-sensor fused robot indoor localization system[J]. Information Technology, 2014(11):83-87.
[4] Wang X, Tang Z. A novel method for digital ultrasonic time-of-flight measurement[J]. Review of Scientific Instruments, 2010,81:105112.
[5] 蒋林, 闫继宏, 臧希喆, 等. 一种新的超声波绝对定位方法[J]. 吉林大学学报:工学版, 2009, 39(1):188-193.
Jiang Lin, Yan Ji-hong, Zang Xi-zhe, et al. New method for ultrasonic absolute localization[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(1): 188-193.
[6] Tsai W Y, Chen H C, Liao T L. An ultrasonic air temperature measurement system with self-correction function for humidity[J]. Measurement Science and Technology, 2005, 16(2): 548-555.
[7] 沈梦婷, 杨学友, 吴军. 基于相位叠加的 Cricket 系统信标节点识别方法[J]. 传感技术学报, 2013, 26(7): 981-985.
Shen Meng-ting,Yang Xue-you,Wu Jun.A method of identifying beacons of cricket system based on phase superposition[J]. Chinese Journal of Sensors and Actuators, 2013, 26(7): 981-985.
[8] 刘超, 田俊杰. 基于SOPC的高精度超声波雷达测距系统设计[J]. 电子产品世界, 2015, 22(11): 51-53.
Liu Chao, Tian Jun-jie. Design of high-precision ultrasonic radar ranging system based on SOPC[J]. Electronic Engineering & Product World, 2015, 22(11): 51-53.
[9] 刘丽艳, 杨洋, 刘芃宏, 等. 基于频谱分析方法的超声空化场三维重建及其分布[J].天津大学学报:自然科学与工程技术版,2014,47(11): 962-966.
Liu Li-yan, Yang Yang, Liu Peng-hong, et al. 3D reconstruction of ultrasonic cavitation field and its distribution based on spectral analysis[J]. Journal of Tianjin University(Science and Technology), 2014,47(11):962-966.
[10] Fu H, Du X K, Chen F. Application of ultrasonic ranging compensate in the pit robot based on Elman network[J]. Journal of China Coal Society,2005,30(6):783-787.
[11] San J L, Rodriguez-Hernandez Emeterio. Wavelet denoising of ultrasonic A-scans for detection of weak signals[C]//The 19th International Conference on Systems, Signals and Image Processing (IWSSIP), Vienna, Austria,2012:48-51.
[12] Om H, Biswas M. An improved image denoising method based on wavelet thresholding[J]. Journal of Signal & Information Processing, 2012,3(1):109-116.
[13] Zhou R, Bao W, Li N, et al. Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform[J]. Digital Signal Processing,2010,20:276-288.
[14] Shao L, Yan R, Li X, et al. From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms[J]. IEEE Transactions on Cybernetics,2014,44:1001-1013.
[15] Zeng T, Ma J L, Fu B B, et al. An exploration of dynamic threshold wavelet shrinkage method for heart sound denoising[J]. International Journal of Information and Electronics Engineering,2015,5(2):93-97.
[16] 姚成, 司玉娟, 郎六琪, 等. 基于提升小波的心电信号P, T波检测快速算法[J]. 吉林大学学报:工学版,2013,43(增刊1): 177-182.
Yao Cheng,Si Yu-juan,Lang Liu-qi,et al.ECG P, T wave complex detection algorithm based on lifting wavelet[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(Sup.1):177-182.
[17] 费业泰. 误差理论与数据处理[M]. 北京:机械工业出版社, 2010:20-23.
[18] 陈建, 孙晓颖, 林琳, 等. 一种高精度超声波到达时刻的检测方法[J].仪器仪表学报, 2012(11):2422-2428.
Chen Jian, Sun Xiao-ying, Lin Lin, et al. Method to precisely measure arrival time of ultrasonic[J].Chinese Journal of Scientific Instrument,2012(11): 2422-2428.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!