J4 ›› 2012, Vol. 50 ›› Issue (4): 693-697.

• 数学 • 上一篇    下一篇

 一个新的实齐次核的Hilbert型积分不等式及其等价形式

谢子填1, 曾峥2, 周庆华1   

  1. 1. 广东肇庆学院 数学系, 广东 肇庆 526061|2. 韶关学院 数学系, 广东 韶关 512005
  • 收稿日期:2011-10-09 出版日期:2012-07-01 发布日期:2012-09-07
  • 通讯作者: 谢子填 E-mail:gdzqxzt@163.com.

A New Hilbert-Type Integral Inequality-with-the Homogeneous

XIE Zitian1, ZENG Zheng2, ZHOU Qinghua1   

  1. 1. Department of Mathematics, Zhaoqing University, Zhaoqing 526061, Guangdong Province, China;
    2. Department of Mathematics, Shaoguan University, Shaoguan 512005, Guangdong Province, China
  • Received:2011-10-09 Online:2012-07-01 Published:2012-09-07
  • Contact: XIE Zitian E-mail:gdzqxzt@163.com.

摘要:

 通过引入双参数的实齐次核, 应用权函数方法给出一个新的有最佳常数因子的Hilbert型积分不等式及其等价形式, 并证明了常数因子的最佳性, 它与ψ函数有关. 同时, 给出了逆向不等式及相应的等价形式.关键词: Hilbert积分不等式; 权函数; Hlder不等式; ψ函数中图分类号: O178文献标志码: A文章编号: 1671-5489(2012)04-0693-05

关键词:  Hilbert积分不等式, 权函数, Hlder不等式, ψ函数

Abstract:

 Having introduced a homogeneous kernel of real number-degree with two independent parameters and estimating the weight function, we gave a new Hilbert-type integral inequality with a real number-degree with a best constant factor, it involves the equivalent inequality with reverse forms considered. It involves the ψ function. The reverse inequality and their corresponding equivalent forms were given.

Key words: Hilberttype integral inequality, weight function, Hlder’s inequality, &psi, function

中图分类号: 

  •