吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (4): 893-898.
燕杨, 黄文博
YAN Yang, HUANG Wenbo
摘要: 针对传统算法很难识别彩色眼底图像中央凹的问题, 提出一种基于全卷积网络(fully convolutional networks, FCN)的眼底图像中央凹自动检测算法. 首先通过彩色眼底图像的局部上下文环境挖掘全局上下文信息, 构建实现局部像素级分类的FCN模型, 然后将局部像素级特征推广到全局金字塔池化模块中, 使空间统计数据为全局语境理解提供了更好地描述与表达, 从而有效获得了极具区分度的全局上下文信息, 最后将全局与局部特征相融合, 实现对中央凹的精准检测. 实验结果表明, 该算法提高了眼底暗病变检测的特异性, 并为眼底严重病变的发现提供了有效证据.
中图分类号: