吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (5): 1055-1065.

• • 上一篇    下一篇

Banach空间中分数阶脉冲积-微分方程的e指数型Ulam-Hyers稳定性

赵彦霞, 杨和   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2019-12-04 出版日期:2020-09-26 发布日期:2020-11-18
  • 通讯作者: 杨和 E-mail:yanghe256@163.com

Exp-Type Ulam-Hyers Stability of Fractional Impulsive Integro-Differential Equations in Banach Spaces

ZHAO Yanxia, YANG He   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2019-12-04 Online:2020-09-26 Published:2020-11-18

摘要: 用Krasnoselskii不动点定理和Gronwall不等式, 讨论Banach空间中分数阶脉冲积-微分方程解的存在性和唯一性问题, 得到了其解的e指数型Ulam-Hyers稳定性, 并用实例说明所得结论的适用性.

关键词: Caputo分数阶积-微分方程, Cauchy问题, 存在性, 唯一性, e指数型Ulam-Hyers稳定性

Abstract: By using Krasnoselskii’s fixed point theorem and Gronwall inequality, we discussed the existence and uniqueness of solutions for fractional impulsive integro-differential equations, and obtained the exp-type Ulam-Hyers stability of these solutions. The applicability of the obtained conclusions was illustrated by an example.

Key words: Caputo fractional integro-differential equation, Cauchy problem, existence, uniqueness, exp-type Ulam-Hyers stability

中图分类号: 

  • O175.15