吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (1): 39-44.

• • 上一篇    下一篇

三角矩阵环上投射余可解的Gorenstein平坦模

王淼, 王占平   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2020-05-12 出版日期:2021-01-26 发布日期:2021-01-26
  • 通讯作者: 王占平 E-mail:359220363@qq.com

Projectively Coresolved Gorenstein Flat Modules over Triangular Matrix Rings

WANG Miao, WANG Zhanping   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2020-05-12 Online:2021-01-26 Published:2021-01-26

摘要: 设T=((A 0 U B))是三角矩阵环, 其中A和B是环, U是(B,A)-双模. 用环T上模张量的同构式作为桥梁, 给出环T上的模是投射余可解的Gorenstein平坦模的等价条件: 若fd(BU)<∞, fd(UA)<∞或id(UA)<∞, 则左T-模M=((M1 M2))φM是投射余可解的Gorenstein平坦模当且仅当M1是投射余可解的Gorenstein平坦左A-模,
 Coker φM=M2/Im(φM)是投射余可解的Gorenstein平坦左B-模, 且φM: U*AM1→M2是单同态.

关键词: 投射余可解的Gorenstein平坦模, 三角矩阵环; 伴随函子

Abstract: Let T=((A 0 U B)) be a triangular matrix ring, where A and B are rings and U is a (B,A)-bimodule. We use the isomorphism of modules tensor on the ring T as a bridge to give the equivalent condition that a module on the ring T is a projectively coresolved Gorenstein flat module: if fd(BU)<∞,fd(UA)<∞ or id(UA)<∞, then a left T-module M=((M1 M2))φM is projectively coresolved Gorenstein flat module if and only if M1 is projectively coresolved Gorenstein flat left A-module, Coker φM=M2/Im(φM) is projectively coresolved Gorenstein flat left B-module and φM: U*AM1→M2 is a monomorphism.

Key words: projectly coresolved Gorenstein flat module, triangular matrix ring, adjoint functor

中图分类号: 

  • O153.3