吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (3): 559-562.

• • 上一篇    下一篇

Minkowski空间一维给定平均曲率型方程Robin问题正解的存在性和多解性

苗亮英1, 何志乾2   

  1. 1. 青海民族大学 数学与统计学院, 西宁 810007; 2. 青海大学 基础课教学研究部, 西宁 810016
  • 收稿日期:2020-07-29 出版日期:2021-05-26 发布日期:2021-05-23
  • 通讯作者: 苗亮英 E-mail:miao0709134@163.com

Existence and Multiplicity of Positive Solutions for Robin Problem of One-Dimensional Prescribed Mean Curvature Equation in Minkowski Space

MIAO Liangying1, HE Zhiqian2   

  1. 1. School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, China;
    2. Teaching and Research Department of Basic Courses, Qinghai University, Xining 810016, China
  • Received:2020-07-29 Online:2021-05-26 Published:2021-05-23

摘要: 基于锥上的不动点指数理论, 通过构造适当的锥, 讨论Minkowski空间中一维给定平均曲率方程Robin问题正解的存在性和多解性, 得到了非线性项f的零点个数与该Robin问题正解个数的关系. 其中: λ是正参数; a∈C[0,1]; f∈C([0,∞),[0,∞))满足存在两个正的点列ai,bi(i=1,2,…,n), aii≤ai+1i+1, 使得f(ai)=0, f(bi)=0且f(s)>0, s∈(ai,bi).

关键词: 平均曲率问题, 不动点指数, 正解, 正解的个数

Abstract: Based on the fixed point index theorem of cone, by constructing a proper cone, we discuss the existence and multiplicity of positive solutions for Robin problem of one-dimensional prescribed mean curvature equation in Minkowski space and obtain relationship between the number of the zeros of the nonlinear term f and the number of positive solutions of the Robin problems, where λ is a positive parameter, a∈C[0,1], f∈C([0,∞),[0,∞)) and there exist two sequences of positive numbers ai and bi with f(ai)=0, f(bi)=0 and f(s)>0 in s∈(ai,bi), and aii≤ai+1i+1 for i=1,2,…,n.

Key words: mean curvature problem, fixed point index, positive solution, number of positive solution

中图分类号: 

  • O175.8