吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (6): 1301-1307.

• • 上一篇    下一篇

随机微分方程依分布周期解的有限元近似

杨雪1, 胡庆婉2, 周锦慧1   

  1. 1. 吉林大学 数学学院, 长春 130012; 2. 曲靖师范学院 数学与统计学院, 云南 曲靖 655011
  • 收稿日期:2022-06-27 出版日期:2022-11-26 发布日期:2022-11-26
  • 通讯作者: 周锦慧 E-mail:jhzhou21@mails.jlu.edu.cn

Finite Element Approximation to Periodic Solution in Distribution of Stochastic Differential Equation

YANG Xue1, HU Qingwan2, ZHOU Jinhui1   

  1. 1. College of Mathematics, Jilin University, Changchun 130012, China;
    2. School of Mathematics and Statistics, Qujing Normal University, Qujing 655011, Yunnan Province, China
  • Received:2022-06-27 Online:2022-11-26 Published:2022-11-26

摘要: 用有限元法求解具有周期性质的概率密度函数研究其随机周期解的统计性质, 证明全空间近似解的积分守恒性以及截断到有限区间上近似解的空间积分近似守恒性, 并通过数值实例验证方法的有效性.

关键词: 随机微分方程, 依分布随机周期解, Fokker-Planck方程, 有限元方法, 近似守恒性

Abstract: The finite element method was used to solve the probability density function with periodic properties to study the statistical properties of stochastic periodic solutions. We proved the integral conservation of the full space approximate solution and the spatial integral approximate conservation of the approximate solution truncated to a finite interval, and verified  the effectiveness of the method  by numerical experiments.

Key words: stochastic differential equation, stochastic periodic solution in distribution, Fokker-Planck equation, finite element method, approximate conservation

中图分类号: 

  • O242.21