吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (1): 85-93.

• • 上一篇    下一篇

Kn□Km,s的r-hued染色

梁玲梅1, 刘凤霞1, 赖虹建2   

  1. 1. 新疆大学 数学与系统科学学院, 乌鲁木齐 830046; 2. 西弗吉尼亚大学 数学系, 美国 西弗吉尼亚 摩根城 26506
  • 收稿日期:2022-01-23 出版日期:2023-01-26 发布日期:2023-01-26
  • 通讯作者: 刘凤霞 E-mail:xjulfx@163.com

r-Hued Coloring of Kn□Km,s

LIANG Lingmei1, LIU Fengxia1, LAI Hongjian2   

  1. 1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China;
    2. Department of Mathematics, West Virginia University, Morgantown 26506, West Virginia, USA
  • Received:2022-01-23 Online:2023-01-26 Published:2023-01-26

摘要: 考虑完全图Kn 和完全二部图Km,s的笛卡尔乘积图的r-hued色数. 首先, 根据正整数r 的不同值进行分类, 并结合Kn□Km,s的性质, 刻画该图r-hued色数的下界; 其次, 找到Kn□Km,s的一个具体的(k,r)\|染色, 并以此刻画该图r-hued色数的一个上界; 最后, 确定了Kn□Km,s的r-hued色数.

关键词: (k,r)-染色, r-hued色数, 笛卡尔乘积图

Abstract: We considered the r-hued chromatic number of Cartesian product of complete graph Kn and complete bipartite graph Kn□Km,s. Firstly, we classified the positive integer r according to its different values, and combined with the properties of Kn□Km,s, we characterized a lower bound of the r-hued chromatic number of the graph. Secondly, we found a specific (k,r)-coloring of Kn□Km,s, so we characterized an upper bound of the r-hued chromatic number of the graph. Finally, we determined the r-hued chromatic number of Kn□Km,s.

Key words: (k,r)-coloring, r-hued chromatic number, Cartesian product of graph

中图分类号: 

  •