吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 214-220.

• • 上一篇    下一篇

一类二阶差分方程组Dirichlet边值问题的正解

吴海艺, 陈天兰   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2022-05-20 出版日期:2023-03-26 发布日期:2023-03-26
  • 通讯作者: 陈天兰 E-mail:chentianlan511@126.com

Positive Solutions of Dirichlet Boundary Value Problems for a Class of Second-Order Difference Equations

WU Haiyi, CHEN Tianlan   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2022-05-20 Online:2023-03-26 Published:2023-03-26

摘要: 用非负上凸函数的Jensen不等式和不动点指数理论讨论一类非线性差分方程组边值问题正解的存在性, 得到了二阶差分方程组Dirichlet边值问题正解存在的充分条件, 其中[1,T]Z∶={1,2,…,T}, T≥2是一个整数; Δu(t)= u(t+1)-u(t)为前向差分算子; f,g: [1,T]Z×[0,∞)×[0,∞)→[0,∞)连续.

关键词: Jensen不等式, 正解, 二阶差分方程组, 不动点指数理论

Abstract: By using  Jensen’s inequality of nonnegative upper convex function and the fixed point index theory, we discuss the existence of positive solutions of the boundary value problem for a class of nonlinear difference equations, and obtain sufficient conditions for the existence of positive solutions of the Dirichlet boundary value problem for the second order difference equations, where [1,T]Z∶={1,2,…,T}, T≥2 is the integer, Δu(t)=u(t+1)-u(t) is the forward difference operator, f,g: [1,T]Z×[0,∞)×[0,∞)→[0,∞) are continuous.

Key words: Jensen’s inequality, positive solution, second-order difference equation, fixed point index theory

中图分类号: 

  • O175.7