吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 347-352.

• • 上一篇    下一篇

一种基于双流网络的行为识别方法

齐妙1,2, 徐慧1, 李森1, 张宇1, 孙慧2   

  1. 1. 东北师范大学 信息科学与技术学院, 长春 130117; 2. 长春人文学院 理工学院, 长春 130117
  • 收稿日期:2022-01-18 出版日期:2023-03-26 发布日期:2023-03-26
  • 通讯作者: 孙慧 E-mail:289368876@qq.com

An Action Recognition Method Based on Two-Stream Network

QI Miao1,2, XU Hui1, LI Sen1, ZHANG Yu1, SUN Hui2   

  1. 1. College of Information Science and Technology, Northeast Normal University, Changchun 130117, China;
    2. Institute of Technology, Changchun Humanities and Sciences College, Changchun 130117, China
  • Received:2022-01-18 Online:2023-03-26 Published:2023-03-26

摘要: 针对视频行为识别任务, 提出一种基于双流网络的行为识别方法. 首先, 该网络采用稀疏采样的策略, 避免相邻帧的冗余信息对识别效果产生影响; 其次, 利用卷积神经网络预测光流图, 提高光流图的获取效率, 并降低计算量; 最后, 使用残差网络提取完成的视频信息, 同时简化神经网络的训练过程. 为验证双流行为识别网络的有效性, 在两个经典数据集上进行对比实验, 实验结果表明, 该双流行为识别网络识别效果较好, 可应用于智能视频监控、 人机交互、 公共安全等领域.

关键词: 行为识别, 卷积神经网络, 双流网络, 稀疏采样

Abstract: Aiming at the task of video action recognition, we proposed an action recognition method based on two-stream network. Firstly,
 a sparse sampling strategy was adopted to avoid the redundant information of adjacent frames from affecting the recognition effect. Secondly, the convolutional neural network was used to predict the optical flow map,  improve the acquisition efficiency of  the optical flow map and reduce the amount of calculation. Finally, the residual network was used to extract the completed video information and simplify the training process of neural networks simultaneously. In order to verify the effectiveness of the two-stream action recognition network, we carried out comparative experiments on two classical data sets. The experimental results show that the proposed two-stream action recognition network has good recognition effect and  can be applied to intelligent video surveillance, human-computer interaction, public security and other fields.

Key words: action recognition, convolutional neural network, two-stream network, sparse sampling

中图分类号: 

  • TP391.41