吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 419-425.

• • 上一篇    下一篇

颜色转换(C^N)2Ir(pic-X)配合物结构及光谱性质的量子理论

聂建航1, 曲珈慧1, 曾妮1, 白福全2, 张建坡1, 金丽1   

  1. 1. 吉林化工学院 化学与制药工程学院, 吉林 吉林 132022;  2. 吉林大学 化学学院,   长春 130021
  • 收稿日期:2022-05-05 出版日期:2023-03-26 发布日期:2023-03-26
  • 通讯作者: 张建坡 E-mail:zhangjp725@126.com

Quantum Theory of Structures and Spectral Properties of Color Conversion (C^N)2Ir(pic-X) Complexes

NIE Jianhang1,  QU Jiahui1,  ZENG Ni1,  BAI Fuquan2,  ZHANG Jianpo1,  JIN Li1   

  1. 1. School of Chemical and Pharmaceutical Engineering,  Jilin Institute of Chemical Technology,  Jilin 132022, Jilin Province,  China;   2.  College of Chemistry,  Jilin University, Changchun 130021, China
  • Received:2022-05-05 Online:2023-03-26 Published:2023-03-26

摘要: 采用B3LYP和UB3LYP方法分别优化一系列(C^N)2Ir(pic-X)(C^N=ppy(1),  dfpmpy(2),  cyppy(3),  dfpmpy(4),  ocfppy(5),  ppy=苯基吡啶, dfpmpy=2-(2,4-双氟苯基)-4-甲基吡啶, cyppy=2-(3-氰基苯基)吡啶, ocfppy=2-(2-辛氧基-3-氰基-4-氟苯基)吡啶,  pic=2-羧基吡啶, X=H(1,2,3,5)和EO2(4), EO2=4-二乙氧基)配合物的S0和T1态几何结构. 利用含时密度泛函理论(TD-DFT)方法,  结合Gauss程序中的溶剂化模型得到它们在CHCl3溶剂中的光谱特征. 结果表明: 所有结构参数和光谱数据均接近它们的实验值; 配合物1~5最低能的吸收和发射分别出现在459,415,412,397,393 nm和567,532, 544,491,490 nm处; 其最高占据分子轨道(HOMOs)主要占据在Ir原子和C^N配体上, 配合物1,2,3,5的最低空轨道(LUMOs)由pic配体贡献, 配合物4由C^N和pic两个配体共同占据, 因此它们具有不同的金属到配体及配体到配体的电荷转移跃迁(MLCT/LLCT)特征. 可见通过调取代基团π电子捐赠能力可改变配合物的发光颜色. 

关键词: 铱(Ⅲ)配合物, 颜色转换, 发光材料, 光谱特征

Abstract: The geometries of S0 and T1 states of a series of iridium(Ⅲ) complexes (C^N)2Ir(pic-X)(C^N=ppy(1),  dfpmpy(2),  cyppy(3),  dfpmpy(4),  ocfppy(5),  ppy=Phenylpyridine,  dfpmpy=2-(2,4-difluorophenyl)-4-methylpyri-dine,  cyppy=2-(3-cyanophenyl)- pyridine,  ocfppy=2-(2-octyl-3-cyano-4-fluorophenyl)pyridine;  pic=2-carboxyl-pyridine;  X=H(1,2,3,5), EO2(4)EO2=4-diethyloxy)were optimized by the B3LYP and  UB3LYP methods,  respectively. Time dependent density functional theory (TD-DFT) method together with the solvation model in Gauss program were used to obtain their spectral properties in CHCl3  solvent. The results show that the structural parameters and spectral datas are close to their experimental values. The lowest energy absorptions and phosphorescence emissions are at 459,415,412,397,393 nm, and 567,532,544,491,490 nm,  respectively. The highest occupied molecular orbital (HOMOs) of complexes 1—5 are mainly localized on the Ir atom and C^N ligands,   the lowest unoccupied molecular orbital (LUMOs) are mainly contributed by the pic ligand for complexes  1,2,3,5,  and dominantly localized on the C^N and pic ligands for complex 4. Therefore,  they have different transition characteristics of metal to ligand and ligand to ligand charge transfer (MLCT/LLCT). The calculation results show that the phosphorescence color can be changed by altering the π electron-donating ability of substituent group.

Key words: iridium(Ⅲ) complex,  , color conversion,  , luminescent material,  , spectral property

中图分类号: 

  • O643