吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (4): 875-882.

• • 上一篇    下一篇

基于YOLOX-S的车窗状态识别算法

黄键1, 徐伟峰1,2, 苏攀1,2, 王洪涛1,2, 李真真1   

  1. 1. 华北电力大学(保定) 计算机系, 河北 保定 071003;
    2. 河北省能源电力知识计算重点实验室, 河北 保定 071003
  • 收稿日期:2022-06-18 出版日期:2023-07-26 发布日期:2023-07-26
  • 通讯作者: 徐伟峰 E-mail:weifengxu@163.com

Car Window State Recognition Algorithm Based on YOLOX-S

HUANG Jian1, XU Weifeng1,2, SU Pan1,2, WANG Hongtao1,2, LI Zhenzhen1   

  1. 1. Department of Computer, North China Electric Power University (Baoding), Baoding 071003, Hebei Province, China;
    2. Hebei Key Laboratory of Knowledge Computing for Energy & Power,  Baoding 071003, Hebei Province, China
  • Received:2022-06-18 Online:2023-07-26 Published:2023-07-26

摘要: 通过对YOLOX-S模型引入可变形卷积神经网络和焦点损失函数(Focal loss), 解决原YOLOX-S模型车窗识别准确率较低的问题. 首先, 通过在YOLOX-S模型的主干特征提取网络中引入可变形卷积神经网络, 对卷积核中的各采样点引入偏移量, 以便在原始图像中提取到更具有表征的信息, 从而提高车窗识别的精准度; 其次, 使用Focal loss替代原模型中的二元交叉熵损失函数, Focal loss能缓解正负样本不平衡对训练的影响, 其在训练过程中更关注难样本, 从而提高了模型对车窗目标的识别性能; 最后, 为验证改进算法的性能, 实验收集并标注15 627张图片进行训练和验证. 实验结果表明, 改进后的车窗识别算法的平均目标精度提高了3.88%.

关键词: 车窗识别, YOLOX-S模型, 可变形卷积神经网络, 焦点损失

Abstract: We solved the problem of low accuracy in car window recognition of the original YOLOX-S model by introducing deformable convolutional neural networks and Focal loss function (Focal loss) to the YOLOX-S model. Firstly, by introducing deformable convolutional neural networks into the backbone feature extraction network of the YOLOX-S model, offsets were introduced for each sampling point in the convolutional kernel to facilitate the extraction of more representative information from the original image, thereby improving the accuracy of car window recognition. Secondly, using Focal loss instead of binary cross entropy loss function in the original model, Focal loss could alleviate the impact of imbalance between positive and negative samples on training, and it paid  more attention to difficult samples during the training process, thereby improving the  recognition performance of the model for car window targets. Finally, in order to verify the performance of the improved algorithm, 15 627 images were collected and annotated for training and validation in the experiment. The experimental results show that the average target accuracy of the improved car window recognition algorithm increases by 3.88%.

Key words:  car window recognition, YOLOX-S model, deformable convolutional neural network, Focal loss

中图分类号: 

  •