吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (5): 1187-1194.

• • 上一篇    下一篇

基于剪切波变换和拟合优度检验的遥感图像去噪

成丽波, 陈鹏宇, 李喆, 贾小宁   

  1. 长春理工大学 数学与统计学院, 长春 130022
  • 收稿日期:2022-05-01 出版日期:2023-09-26 发布日期:2023-09-26
  • 通讯作者: 陈鹏宇 E-mail:919089661@qq.com

Remote Sensing Image Denoising Based on Shearlet Transform and Goodness of Fit Test

CHENG Libo, CHEN Pengyu, LI Zhe, JIA Xiaoning   

  1. School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2022-05-01 Online:2023-09-26 Published:2023-09-26

摘要: 针对遥感图像中的高斯白噪声, 提出一种基于剪切波变换和拟合优度检验的遥感图像去噪算法. 首先, 将含噪遥感图像通过剪切波变换多尺度分解得到不同子带, 利用剪切波域下高斯白噪声系数的统计关系估计去噪阈值; 其次, 计算高频子带的拟合优度检验统计量, 将统计量与去噪阈值相比较进行去噪; 最后, 对系数矩阵进行剪切波逆变换重建去噪图像. 仿真实验结果表明, 该算法能有效去除遥感图像中的高斯噪声, 保持图像的边缘纹理信息, 并且在不同噪声水平下, 均获得了较高的峰值信噪比, 其中与剪切波阈值去噪算法相比平均提高0.33 dB.

关键词: 遥感图像, 剪切波变换, 拟合优度检验, 图像去噪

Abstract: Aiming at white Gaussian noise in remote sensing images, we proposed a remote sensing images denoising algorithm based on shearlet transform and goodness of fit test. Firstly, the noisy remote sensing image was decomposed into different sub-bands through shearlet transform at multiple scales, and  the denoising threshold was estimated using the statistical relationship of white Gaussian noise coefficients in the shearlet domain. Secondly, we calculated the goodness of fit test statistics of high-frequency sub-bands  and compared it with the denoising threshold for denoising. Finally, shearlet  inverse transform on the coefficient matrix was performed to reconstruct the denoised  images. The simulation experiment results show that this algorithm can effectively remove Gaussian noise in remote sensing images, maintain the edge texture information of images, and achieve  high peak signal-to-noise ratio under different noise levels, among which the  average increase is  0.33 dB compared with  the shearlet threshold denoising algorithm.

Key words: remote sensing image, shearlet transform, goodness of fit test, image denoising

中图分类号: 

  • TP341.4