吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (6): 1296-1304.

• • 上一篇    下一篇

 一个新的涉及高阶导函数与部分和的半离散Hilbert型不等式

王爱珍, 杨必成   

  1. 广东第二师范学院 数学学院, 广州 510303
  • 收稿日期:2023-03-20 出版日期:2023-11-26 发布日期:2023-11-26
  • 通讯作者: 杨必成 E-mail:bcyang@gdei.edu.cn

A New Half-Discrete Hilbert-Type Inequality Involving Higher-Order Derivative Function and Partial Sums

WANG Aizhen, YANG Bicheng   

  1. School of Mathematics, Guangdong University of Education, Guangzhou 510303, China
  • Received:2023-03-20 Online:2023-11-26 Published:2023-11-26

摘要: 首先, 应用权函数方法、 Euler-Maclaurin求和公式、 Abel部分求和公式及实分析技巧, 给出一个新的涉及高阶导函数和部分和的半离散Hilbert型不等式; 其次, 作为应用, 讨论特殊参数下不等式中最佳常数因子联系多参数的等价条件及一些特殊不等式.

关键词: 权函数, Euler-Maclaurin求和公式, Abel部分求和公式, 半离散Hilbert型不等式, 高阶导函数, 部分和

Abstract: Firstly, by using  the method of weight functions, Euler-Maclaurin summation formula, Abel’s summation by parts formula, and the technique of real analysis, we gave a new half-discrete Hilbert-type inequality involving higher-order derivative function and partial sums. Secondly, as applications, we discussed the equivalent conditions of the best constant factor to connect multiple parameters in a  inequality with particular  parameter and several particular inequalities.

Key words: weight function, Euler-Maclaurin summation formula, Abel’s summation by parts formula, half-discrete Hilbert-type inequality, higher-order derivative function, partial sums

中图分类号: 

  • O178