吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (3): 573-585.

• • 上一篇    下一篇

非齐度量测度空间上广义分数次积分的加权弱估计

田玉凤, 陶双平   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2023-07-13 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 陶双平 E-mail:taosp@nwnu.edu.cn

Weighted Weak Estimates for Generalized Fractional Integral on Non-homogeneous Metric Measure Spaces

TIAN Yufeng, TAO Shuangping   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2023-07-13 Online:2024-05-26 Published:2024-05-26

摘要: 设(X,d,μ)为满足上双倍条件和几何双倍条件的非齐度量测度空间, Tα为(X,d,μ)上的广义分数次积分算子. 通过建立sharp极大函数的点态不等式, 得到Tα是从加权Lebesgue空间Lp(ω)到加权弱Lebesgue空间Lp,∞(ω)上有界的, 并且也是从加权Morrey空间Lp,κ,η(ω)到加权弱Morrey空间WLp,κ,η(ω)上有界的.

关键词: 广义分数次积分, 加权弱估计, 加权Morrey空间, 非齐度量测度空间

Abstract: Let (X,d,μ) be a non-homogeneous metric measure space which satisfies the upper doubling and geometrically doubling conditions, and Tα be the generalized fractional integral operator on (X,d,μ). By establishing pointwise inequality of sharp maximum function, we obtain that Tα is bounded from the weighted Lebesgue space Lp(ω) to the weighted weak Lebesgue space WLp,κ,η(ω), and also from the weighted Morrey space Lp,κ,η(ω) to the weighted weak Morrey space WLp,κ,η(ω).

Key words: generalized fractional integral, weighted weak estimate, weighted Morrey space, non-homogeneous metric measure space

中图分类号: 

  • O174.2