吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (3): 615-628.

• • 上一篇    下一篇

基于用户长短期偏好的个性化推荐

叶榕, 邵剑飞, 邵建龙   

  1. 昆明理工大学 信息工程与自动化学院, 昆明 650500
  • 收稿日期:2023-06-02 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 邵剑飞 E-mail:1515346516@qq.com

Personalized Recommendations Based on Users’ Long- and Short-Term Preferences

YE Rong, SHAO Jianfei, SHAO Jianlong   

  1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2023-06-02 Online:2024-05-26 Published:2024-05-26

摘要: 针对现有序列推荐模型忽略用户的长期偏好和短期偏好, 导致推荐模型不能充分发挥作用, 推荐效果不佳的问题, 提出一种基于用户长短期偏好的个性化推荐模型. 首先, 针对长期偏好序列长且不连续的特点, 采用BERT(bidirectional encoder representations from transformers)对长期偏好建模; 针对短期偏好序列短且与用户交互的间隔时间较短, 具有易变性, 采用垂直水平卷积网络对短期偏好建模; 在得到用户的长期偏好和短期偏好后, 利用激活函数进行动态建模, 然后利用门控循环网络对长短期偏好进行平衡. 其次, 针对用户在日常交互中的误碰行为, 采用稀疏注意力网络进行建模, 在对长短期偏好建模前使用稀疏注意力网络进行用户行为序列处理; 用户特征偏好对推荐结果也会有影响, 使用带有偏置编码的多头注意力机制对用户特征进行提取. 最后, 将各部分得到的结果输入到全连接层得到最后的输出结果. 为验证本文模型的可行性, 在数据集Yelp和MovieLens-1M上进行实验, 实验结果表明该模型优于其他基线模型.

关键词: 序列推荐; 长期偏好; 短期偏好; 稀疏注意力网络; , 垂直水平卷积网络

Abstract: Aiming at the problem that the existing sequence recommendation model ignored the users’ long-term preference and short-term preference, resulting in the recommendation model not being able to  fully play its role and the recommendation effect being poor, we proposed a personalized recommendation model based on the users’ long- and short-term preferences. Firstly, for the characteristics of long and discontinuous long-term preference sequences, BERT (bidirectional encoder representations from transformers) was used to model the long-term preference, for the short-term preference sequences and the short interval time between interaction with the user, which was volatile, vertical and horizontal convolutional networks were used to model the short-term preference, after obtaining the users’ long-term preference and short-term preference, activation functions were used to model dynamically, and then a gated recurrent network was used to balance the long- and short-term preferences. Secondly, for the users’ mis-touching behavior in daily interaction, sparse attention network was used for modeling, and sparse attention network was used to process the users’ behavioral sequences before modeling the long- and short-term preferences. User feature preferences also had an impact on the recommendation results, and user features were extracted by using a multi-head attention mechanism with bias coding. Finally, the results obtained from each part were input into the fully connected layer to obtain the final output result. In order to verify the feasibility of the proposed model, experiments were conducted on Yelp and MovieLens-1M datasets, and the results show that the proposed model outperforms other baseline models.

Key words: sequential recommendation, long-term preference; short-term preference; sparse attention network; , vertical and horizontal convolutional network

中图分类号: 

  • TP391