吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 960-970.

• • 上一篇    下一篇

基于CNN-SVM和集成学习的固井质量评价方法

肖红, 钱祎鸣   

  1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2023-07-05 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 钱祎鸣 E-mail:1031701181@qq.com

Cementing Quality Evaluation Method Based on CNN-SVM and Integrated Learning

XIAO Hong, QIAN Yiming   

  1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China
  • Received:2023-07-05 Online:2024-07-26 Published:2024-07-26

摘要: 为解决固井质量评价问题, 提出一种基于CNN-SVM和集成学习的固井质量评价方法. 首先, 针对DenseNet模型采取缩减网络层数、增加多尺度卷积层、 嵌入卷积注意力模块等改进措施, 以提高模型的训练速度和评价准确率; 其次, 利用InceptionV1模块和扩张卷积构建一个模型复杂度相对较小且评价准确率相对较高的Inception-DCNN模型; 再次, 优选3个经典的卷积神经网络模型(ResNet50,MobileNetV3-Small,GhostNet), 利用卷积神经网络强大的特征提取能力及支持向量机的结构风险最小化能力, 将上述模
型分别与支持向量机组合成新的CNN-SVM模型, 以提升模型的泛化能力; 最后, 采用Bagging方式将5个新的CNN-SVM模型集成为一个强学习器, 从而提升评价结果的准确度, 增强模型的抗干扰能力. 实验结果表明, 该方法对测试集中的3类评价样本的准确率为97.69%, 与单个模型和其他方法相比提升了1~9个百分点, 验证了采用基于CNN-SVM和集成学习的方法进行固井质量评价是切实可行的.

关键词: 固井质量评价, 扇区水泥胶结测井, 集成学习, 卷积神经网络, 支持向量机

Abstract: In order to solve the problem of cementing quality evaluation, we proposed a cementing quality evaluation method based on CNN-SVM and integrated learning. Firstly, the method adopted improvement measures such as reducing the number of network layers, adding multi-scale convolutional layers, and embedding convolutional attention modules for the DenseNet model to improve the training speed and evaluation accuracy of the model. Secondly, the InceptionV1 module and dilated convolution were used to construct an Inception-DCNN model with relatively small model complexity and relatively high evaluation accuracy. Thirdly,three classic convolutional neural network models (ResNet50, MobileNetV3-Small and GhostNet) were selected. By utilizing the powerful feature extraction capabilities of convolutional neural networks and the structural risk minimization capabilities of support vector machines, the above  models were combined with a support vector machine to synthesize a new CNN-SVM model to improve the generalization ability of the model. Finally, the Bagging method was used to integrate the five new CNN-SVM models into a strong learner, thereby improving the accuracy of the evaluation results and enhancing the anti-interference ability of the model. The experimental results show that the accuracy of  the method for 3 types of evaluation samples in the test set is 97.69%, which is 1—9 percentage points higher than that of  a single model and other methods, thus verifying  the feasibility of using  methods based on CNN-SVM and ensemble learning for cementing  quality evaluation.

Key words: cementing quality evaluation, sector cement cement logging, integrated learning, convolutional neural network, support vector machine

中图分类号: 

  • TP391