吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1418-1426.

• • 上一篇    下一篇

基于双域查询增强Transformer的遥感图像旋转小目标检测

王福军1,2, 王星1, 王柯迪3   

  1. 1. 辽宁工程技术大学 测绘与地理科学学院, 辽宁 阜新 123000;2. 吉林师范大学 环境友好材料制备与应用教育部重点实验室, 长春 130103;3. 临沂大学 信息科学与工程学院, 山东 临沂 276000
  • 收稿日期:2024-12-11 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 王福军 E-mail:fjwang@jlnu.edu.cn

Rotated Small Object Detection of Remote Sensing Images Based on Dual-Domain Query Enhanced Transformer

WANG Fujun1,2, WANG Xing1, WANG Kedi3   

  1. 1. School of Geomatics, Liaoning Technical University, Fuxin 123000, Liaoning Province, China; 2. Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China; 3. School of Information Science and Engineering, Linyi University, Linyi 276000, Shandong Province, China
  • Received:2024-12-11 Online:2025-09-26 Published:2025-09-26

摘要: 针对遥感图像中旋转小目标在尺度受限、 姿态多样及复杂背景条件下检测精度不足的问题, 提出一种旋转感知双域查询增强的Transformer网络方法. 该方法采用卷积神经网络提取多尺度特征, 并在编码端引入空间和频率双域联合增强机制, 其中空间自适应模块利用多尺度感受野捕获几何结构特征, 频率自适应模块通过小波变换提取方向信息, 经跨域融合模块生成兼具空间与频率感知能力的特征查询. 解码端引入旋转感知模块, 在Transformer解码过程中动态估计空间偏移, 实现多尺度旋转小目标的精准对齐. 实验结果表明, 该方法在公开遥感图像数据集上显著提升了旋转小目标的检测精度, 验证了其在复杂背景条件下的有效性和鲁棒性.

关键词: 遥感图像, 旋转小目标检测, 双域查询增强, Transformer模型

Abstract: Aiming at the problem of insufficient detection accuracy of rotated small objects in remote sensing images under  limited scale, diverse orientations, and complex background conditions, we  proposed a Transformer network  method with dual-domain query enhancement and rotation awareness. The method used  convolutional neural network  to extract multi-scale features and introduced a joint enhancement in both spatial and frequency domains at the encoding end. The  spatial  adaptation module captured geometric structure features by using multi-scale receptive fields, while a frequency adaptation  module  extracted directional information through  wavelet transform. After  cross-domain fusion, a feature query  with both spatial and frequency 
perception capabilities was generated. We introduced a rotation-aware module at the encoding end to dynamically estimate spatial offsets during the Transformer decoding process, achieving precise alignment of rotated small objects at multiple scales. The experimental results show  that the proposed method significantly improves detection accuracy of rotated small objects on public remote sensing image datasets,  verifying  its effectiveness and robustness under complex background conditions.

Key words: remote sensing image, rotated small object detection, dual-domain query enhancement, Transformer model

中图分类号: 

  • TP183