吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1447-1453.

• • 上一篇    下一篇

基于机器学习的畸变图像非对称式几何校正方法

冯新扬1, 张墨华1, 李寅飞2   

  1. 1. 河南财经政法大学 计算机与信息工程学院, 郑州 450046; 2. 郑州大学 公共卫生学院, 郑州 450001
  • 收稿日期:2024-07-12 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 李寅飞 E-mail:SYliyinfei2603@163.com

Machine Learning Based Asymmetric Geometric Correction  Method for Distorted Images

FENG Xinyang1, ZHANG Mohua1, LI Yinfei2   

  1. 1. College of Computer and Information Engineering, Henan University of Economics and Law, Zhengzhou 450046, China;
    2. School of Public Health, Zhengzhou University, Zhengzhou 450001, China
  • Received:2024-07-12 Online:2025-09-26 Published:2025-09-26

摘要: 针对实际图像畸变通常不均匀分布、 呈现非对称特征的问题, 为提高图像质量, 使其更接近真实情况, 精细调整图像中不同区域、 不同方向的畸变, 从而恢复图像的原始形态, 提出一种基于机器学习的畸变图像非对称式几何校正方法. 首先, 通过直方图均衡化进行亮度补偿, 提升图像的视觉效果并丰富细节; 其次, 在预处理后的畸变图像中选取一些关键点或特征点, 采用归一化积相关算法利用这些点的位置关系定位校正所需的所有畸变控制点; 最后, 使用机器学习中的BP神经网络学习并拟合原始图像和畸变图像之间复杂的非线性关系, 通过训练使BP神经网络能更准确地描述图像的畸变特性网络输出接近控制点的坐标, 从而实现畸变图像非对称式几何校正. 实验结果表明, 该方法具有良好的泛化能力和处理复杂非对称畸变的能力, 能有效提高图像的畸变校正精度, 将每张图片的平均分辨率提高465.3 PPI.

关键词: 直方图均衡, 归一化积相关算法, 畸变控制点, BP神经网络, 非对称式几何校正

Abstract: Aiming at the problem of uneven distribution and  asymmetric characteristics  in practical image distortion. In order to improve the quality of the image and make it closer to the real situation, the distortion in different regions and directions of the image was finely adjusted to restore the original shape of the image, we proposed  a machine learning based asymmetric geometric correction method for distorted images. Firstly, the visual effect of the image was improved and details were enriched by using histogram equalization for brightness compensation. Secondly, we selected some key points or feature points from the preprocessed distorted image, and used the normalized product correlation algorithm to locate and correct all distortion control points required by the positional relationship of these points. Finally, we used the BP neural network in machine learning to learn and fit the complex nonlinear relationship between the original image and the distorted image. Through training, we enabled BP neural network to more accurately describe the distortion characteristics of the image. The network outputs coordinates closed to the control point, thereby achieving asymmetric geometric correction of the distorted image. The experimental results show that the proposed method has good generalization ability and the ability to handle complex asymmetric distortions, which  can effectively improve the accuracy of image distortion correction and increase the average resolution of each image by 465.3 PPI.

Key words: histogram equalization, normalized product correlation algorithm, distortion control point, BP neural network, asymmetric geometric correction

中图分类号: 

  • TP751