吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (4): 893-898.

• 计算机科学 • 上一篇    下一篇

基于FCN的眼底图像中央凹自动检测算法

燕杨, 黄文博   

  1. 长春师范大学 计算机科学与技术学院, 长春 130032;吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2019-10-14 出版日期:2020-07-26 发布日期:2020-07-16
  • 通讯作者: 黄文博 E-mail:huangwenbo@sina.com

Fovea Automatic Detection Algorithmin Fundus Image Based on FCN

YAN Yang, HUANG Wenbo   

  1. College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China;Key Laboratory of Symbolic Computing and Knowledge Engineering for Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2019-10-14 Online:2020-07-26 Published:2020-07-16
  • Contact: HUANG Wenbo E-mail:huangwenbo@sina.com

摘要: 针对传统算法很难识别彩色眼底图像中央凹的问题, 提出一种基于全卷积网络(fully convolutional networks, FCN)的眼底图像中央凹自动检测算法. 首先通过彩色眼底图像的局部上下文环境挖掘全局上下文信息, 构建实现局部像素级分类的FCN模型, 然后将局部像素级特征推广到全局金字塔池化模块中, 使空间统计数据为全局语境理解提供了更好地描述与表达, 从而有效获得了极具区分度的全局上下文信息, 最后将全局与局部特征相融合, 实现对中央凹的精准检测. 实验结果表明, 该算法提高了眼底暗病变检测的特异性, 并为眼底严重病变的发现提供了有效证据.

关键词: 眼底图像, 中央凹检测, 全卷积网络, 金字塔池化模块

Abstract: Aiming at the problem that it was difficult to recognize the fovea of color fundus image with traditional algorithm, we proposed  a fovea automatic detection algorithm based on fully convolutional networks (FCN). Firstly, we mined global context information through the local context environment of color fundus images, and constructed an FCN model to realize local pixel-level classification. Secondly, the local pixel\|level features were extended to the global pyramid pooling module, so that the spatial statistical data could provide a better description and expression for the global context understanding, thus effectively obtain the highly differentiated global context information. Finally, the global and local features were fused to achieve accurate detection of the central fovea. The experimental results show that the algorithm improves the specificity of detection of dark fundus lesions, and provides an effective basis for the detection of serious fundus lesions.

Key words: fundus image, fovea detection, fully convolutional networks (FCN), pyramid pooling module

中图分类号: 

  •