吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (6): 1317-1325.

• • 上一篇    下一篇

非退化Gevrey势能下拟周期Jacobi算子Lyapunov指数的正性与连续性

胡苗苗, 陶凯   

  1. 河海大学 理学院, 南京 210098
  • 收稿日期:2022-02-28 出版日期:2022-11-26 发布日期:2022-11-26
  • 通讯作者: 陶凯 E-mail:ktao@hhu.edu.cn

Positivity and Continuity of Lyapunov Exponent of Quasi-periodic Jacobi Operator under Non-degenerate Gevrey Potential Energy

HU Miaomiao, TAO Kai   

  1. College of Science, Hohai University, Nanjing 210098, China
  • Received:2022-02-28 Online:2022-11-26 Published:2022-11-26

摘要: 使用解析逼近、 次调和函数、 Birkhoff遍历定理、 大偏差定理和雪崩原理等方法, 研究拟周期Jacobi算子模型所对应的Lyapunov指数的正则性问题, 得到了在势能为非退化的Gevrey 函数条件下, 若频率是强Diophantine数, 且势能的系数充分大时, Lyapunov指数的正性和连续性都成立的结果.  从而将SL(2,R)的Schrodinger斜积流结果推广到了GL(2,R)的Jacobi斜积流上.

关键词: 拟周期Jaocbi算子, 非退化Gevrey函数, Lyapunov指数, 连续性, 正性

Abstract: We used the methods such as the analytical approximation, the subharmonic function, the Birkhoff ergodic theorem, the large deviation theorem and the avalanche principle to study the regularity of the Lyapunov exponent corresponding to  the quasi-periodic Jacobi operator model. Under the condition that the potential energy is a non-degenerate Gevrey function, if the frequency is a strong Diophantine  number and the coefficient of potential energy is  large enough, we obtain the results that  Lyapunov exponent is positive and continuous. Thus, the  result of the Schrodinger cocycle in SL(2,R) is extended to the Jacobi cocycle  in GL(2,R).

Key words: quasi-periodic Jacobi operator, non-degenerate Gevrey function, Lyapunov exponent, continuity, positivity

中图分类号: 

  • O193