1 |
HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
|
2 |
TENNANT D A, DURÁN R V, GOTTLIEB E. Targeting metabolic transformation for cancer therapy[J]. Nat Rev Cancer, 2010, 10(4): 267-277.
|
3 |
BOSE S, HUANG Q, MA Y H, et al.G6PD inhibition sensitizes ovarian cancer cells to oxidative stress in the metastatic omental microenvironment[J].Cell Reports,2022,39(13): 111012.
|
4 |
ZHANG Y, XU Y, LU W Y, et al.G6PD-mediated increase in de novo NADP+ biosynthesis promotes antioxidant defense and tumor metastasis[J].Sci Adv,2022,8(29): eabo0404.
|
5 |
JIANG P, DU W J, WANG X W, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase[J].Nat Cell Biol,2011,13(3):310-316.
|
6 |
STANTON R C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival[J]. IUBMB Life, 2012,64(5):362-369.
|
7 |
ZHANG X M, ZHANG X, LI Y, et al. PAK4 regulates G6PD activity by p53 degradation involving colon cancer cell growth[J].Cell Death Dis, 2017,8(5): e2820.
|
8 |
TENNANT D A, DURÁN R V, GOTTLIEB E. Targeting metabolic transformation for cancer therapy[J]. Nat Rev Cancer, 2010, 10(4): 267-277.
|
9 |
GOMES P, FLEMING OUTEIRO T, CAVADAS C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism[J]. Trends Pharmacol Sci, 2015, 36(11): 756-768.
|
10 |
TANG X Q, CHEN X F, WANG N Y, et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy[J]. Circulation, 2017, 136(21): 2051-2067.
|
11 |
WANG H L, MA X, GUAN X Y, et al. Potential synthetic lethality for breast cancer: a selective sirtuin 2 inhibitor combined with a multiple kinase inhibitor sorafenib[J]. Pharmacol Res,2022,177:106050.
|
12 |
CHEN X L, WANG Y, JIANG S L.The effect of sirtuin 2 (Sirt2) overexpressing bone marrow mesenchymal stem cells on the growth of human epidermal growth factor receptor 2 (Her-2) breast cancer cells and its mechanism[J].J Biomater Tissue Eng,2021,11(4):778-785.
|
13 |
WAWRUSZAK A, LUSZCZKI J, CZERWONKA A, et al. Assessment of pharmacological interactions between sirt2 inhibitor AGK2 and paclitaxel in different molecular subtypes of breast cancer cells[J]. Cells, 2022, 11(7):1211.
|
14 |
陈 静,王红静.SIRT2在宫颈癌组织中的表达及其临床意义[J].四川大学学报(医学版),2019,50(5):701-707.
|
15 |
杨秋霞,周洪钟,任吉华,等.SIRT2对裸鼠原位肝癌生长和肺转移的影响及其机制研究[J].中国细胞生物学学报,2018,40(3):318-325.
|
16 |
彭秋平,梁后杰.糖酵解代谢在恶性肿瘤细胞中的特异性表型及其意义[J].临床肿瘤学杂志,2009,14(5):470-473.
|
17 |
CHEN J, CHAN A W H, TO K F, et al. SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3β/β-catenin signaling[J]. Hepatology, 2013, 57(6):2287-2298.
|
18 |
牛 虹,杨 峰,唐静雯,等.SIRT2沉默对胃癌SGC-7901细胞增殖、迁移和侵袭的影响[J].中国医药生物技术,2018,13(6):526-531.
|
19 |
GUO Y J, ZHAO N N, ZHOU J L, et al. Sirtuin 2 in endometrial cancer: a potential regulator for cell proliferation, apoptosis and RAS/ERK pathway[J]. Technol Cancer Res Treat, 2020, 19: 1533033820980781.
|
20 |
WANG X, LI X J, ZHANG X Q, et al. Glucose-6-phosphate dehydrogenase expression is correlated with poor clinical prognosis in esophageal squamous cell carcinoma[J]. Eur J Surg Oncol, 2015,41(10):1293-1299.
|
21 |
WANG J X, YUAN W J, CHEN Z K, et al. Overexpression of G6PD is associated with poor clinical outcome in gastric cancer[J]. Tumour Biol,2012,33(1):95-101.
|
22 |
OHL F, JUNG M, RADONIĆ A, et al. Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer[J]. J Urol, 2006,175(5):1915-1920.
|
23 |
冯 笑,刘兆宇,胡 腊,等. 敲低及过表达G6PD对肝癌细胞增殖和迁移的影响[J].实用医学杂志,2018,34(5):698-701,706.
|
24 |
XU S N, WANG T S, LI X, et al. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation[J]. Sci Rep, 2016, 6: 32734.
|
25 |
VOGELMANN A, SCHIEDEL M, WÖSSNER N,et al.Development of a NanoBRET assay to validate inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration[J]. RSC Chem Biol, 2022, 3(4): 468-485.
|