吉林大学学报(医学版) ›› 2023, Vol. 49 ›› Issue (2): 520-526.doi: 10.13481/j.1671-587X.20230230
王绍泰1,2,姜欢1,2,宋东升1,2,李超1,胡敏1,2()
收稿日期:
2022-02-15
出版日期:
2023-03-28
发布日期:
2023-04-24
通讯作者:
胡敏
E-mail:humin@jlu.edu.cn
作者简介:
王绍泰(1998-),男,山东省淄博市人,在读硕士研究生,主要从事药物和生物材料影响骨代谢方面的研究。
基金资助:
Received:
2022-02-15
Online:
2023-03-28
Published:
2023-04-24
摘要:
骨代谢是指骨的转化过程,包括骨形成和骨吸收,临床上骨代谢异常疾病的治疗包括手术治疗和药物治疗等。雷奈酸锶(SrR)是同时具有抗骨吸收和促骨形成双重作用的常用药,主要依靠其中的锶(Sr)元素调节骨代谢。目前,国内外学者对SrR在骨代谢异常中的临床应用研究较多,但对其在调节骨吸收和骨形成作用中的机制研究报道较少,尤其各类信号通路在骨代谢中的调控作用及相关分子表达变化报道较少。现通过各类信号通路及蛋白靶点,主要从SrR对骨代谢影响、作用机制和不良反应等方面进行综述,为SrR的临床应用提供理论依据。
中图分类号:
王绍泰,姜欢,宋东升,李超,胡敏. 雷奈酸锶对骨代谢的影响及其机制的研究进展[J]. 吉林大学学报(医学版), 2023, 49(2): 520-526.
表1
SrR调控骨代谢的相关信号通路"
Signaling pathway | Therapeutic target | Cell | Effect | |
---|---|---|---|---|
TGF-β/Smad[ | Smad↑ | Osteoblasts | Promote bone formation | |
Hh[ | Gli1↑ PPARγ↓ | BMSCs | Promote bone formation Reduce lipid formation | |
Wnt/β-catenin[ | Wnt signaling pathway related molecules↑ PPARγ↓ Sclerostin↓ | Osteoblasts BMSCs | Promote bone formation Reduce lipid formation | |
MAPK[ | Setd2↑ CaSR↑ | Osteoblasts Dental pulp stem cells | Promote bone formation | |
PI3K/Akt[ | CaSR↑ PI3K↑ | BMSCs | Promote bone formation | |
RhoA-ROCK[ | ROCK1↑ | BMSCs | Promote bone formation | |
NF-κB[ | Calcium channel↑ | Vascular smooth muscle cells | Promote bone formation | |
CaN-NFAT[ | NFAT↑ PPARγ↓ | BMSCs | Promote bone formation Reduce lipid formation | |
↑indicated increase;↓indicated decrease. |
1 | SUZUKI A, MINAMIDE M, IWAYA C, et al. Role of metabolism in bone development and homeostasis[J]. Int J Mol Sci, 2020, 21(23): 8992. |
2 | NIEDERLE M B, FOEGER-SAMWALD U, RISS P, et al. Effectiveness of anti-osteoporotic treatment after successful parathyroidectomy for primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial[J]. Langenbecks Arch Surg, 2019, 404(6): 681-691. |
3 | WU T T, YANG S E, LU T L, et al. Strontium ranelate simultaneously improves the radiopacity and osteogenesis of calcium phosphate cement[J]. Biomed Mater, 2019, 14(3): 035005. |
4 | LAVET C, MABILLEAU G, CHAPPARD D, et al. Strontium ranelate stimulates trabecular bone formation in a rat tibial bone defect healing process[J]. Osteoporos Int, 2017, 28(12): 3475-3487. |
5 | KOŁODZIEJSKA B, STEPIEŃ N, KOLMAS J. The Influence of strontium on bone tissue metabolism and its application in osteoporosis treatment[J]. Int J Mol Sci, 2021, 22(12):6564. |
6 | TAKAOKA S, YAMAGUCHI T, YANO S, et al. The Calcium-sensing Receptor (CaR) is involved in strontium ranelate-induced osteoblast differentiation and mineralization[J].Horm Metab Res,2010,42(9):627-631. |
7 | CHATTOPADHYAY N, QUINN S J, KIFOR O,et al.The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation[J]. Biochem Pharmacol, 2007, 74(3): 438-447. |
8 | CIANFEROTTI L, GOMES A R, FABBRI S, et al. The calcium-sensing receptor in bone metabolism: from bench to bedside and back[J]. Osteoporos Int, 2015, 26(8): 2055-2071. |
9 | ATKINS G J, WELLDON K J, HALBOUT P, et al. Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response[J]. Osteoporos Int, 2009, 20(4): 653-664. |
10 | ALMEIDA M M, NANI E P, TEIXEIRA L N, et al. Strontium ranelate increases osteoblast activity[J]. Tissue Cell, 2016, 48(3): 183-188. |
11 | BIZELLI-SILVEIRA C, ABILDTRUP L A, SPIN-NETO R, et al. Strontium enhances proliferation and osteogenic behavior of bone marrow stromal cells of mesenchymal and ectomesenchymal origins in vitro [J]. Clin Exp Dent Res, 2019, 5(5): 541-550. |
12 | CAVERZASIO J. Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms[J]. Bone, 2008, 42(6): 1131-1136. |
13 | KOUKOU O I, PAPPAS L D, CHLOROPOULOU P, et al. The effect of strontium ranelate on fracture healing: an animal study[J]. Biomed Res Int, 2020, 2020: 1085324. |
14 | HAMDY N A. Strontium ranelate improves bone microarchitecture in osteoporosis[J]. Rheumatology (Oxford), 2009, 48(): iv9-iv13. |
15 | SHI C G, SUN B, MA C, et al. Comparable effects of strontium ranelate and alendronate treatment on fracture reduction in a mouse model of osteogenesis imperfecta[J]. Biomed Res Int, 2021, 2021: 4243105. |
16 | PEI Y, ZHENG K, SHANG G N, et al. Therapeutic effect of strontium ranelate on bone in chemotherapy-induced osteopenic rats via increased bone volume and reduced bone loss[J].Biol Trace Elem Res,2019,187(2): 472-481. |
17 | BIZELLI-SILVEIRA C, PULLISAAR H, ABILDTRUP L A, et al. Strontium enhances proliferation and osteogenic behavior of periodontal ligament cells in vitro [J]. J Periodontal Res, 2018, 53(6): 1020-1028. |
18 | GENG T X, CHEN X, ZHENG M X, et al. Effects of strontium ranelate on wear particle-induced aseptic loosening in female ovariectomized mice[J]. Mol Med Rep, 2018, 18(2): 1849-1857. |
19 | HURTEL-LEMAIRE A S, MENTAVERRI R, CAUDRILLIER A, et al. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways[J]. J Biol Chem, 2009, 284(1): 575-584. |
20 | CAUDRILLIER A, HURTEL-LEMAIRE A S, WATTEL A, et al. Strontium ranelate decreases receptor activator of nuclear factor-ΚB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor[J]. Mol Pharmacol, 2010, 78(4): 569-576. |
21 | KARAKAN N C, AKPINAR A, GÖZE F, et al. Investigating the effects of systemically administered strontium ranelate on alveolar bone loss histomorphometrically and histopathologically on experimental periodontitis in rats[J]. J Periodontol, 2017, 88(2): e24-e31. |
22 | KIRSCHNECK C, WOLF M, REICHENEDER C, et al. Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats[J]. Eur J Pharmacol, 2014, 744: 67-75. |
23 | JANN J, GASCON S, ROUX S, et al. Influence of the TGF-β superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions[J]. Int J Mol Sci, 2020, 21(20): 7597. |
24 | WANG D F, YAN C, ZHOU L, et al. Changes in BMP-2 expression and mechanical properties during treatment of rats with osteoporotic hindlimb fracture with strontium ranelate[J]. J Musculoskelet Neuronal Interact, 2020, 20(1): 136-141. |
25 | PAN F Y, LI Z M, LIU X W, et al. Effect of strontium ranelate on rabbits with steroid-induced osteonecrosis of femoral head through TGF-β1/BMP2 pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(3): 1000-1006. |
26 | 吴 鸣, 徐继平, 田红波. BMP-2联合雷奈酸锶对大鼠成骨细胞增殖和分化的影响[J]. 临床和实验医学杂志, 2018, 17(22): 2382-2385. |
27 | QUADE M, VATER C, SCHLOOTZ S, et al. Strontium enhances BMP-2 mediated bone regeneration in a femoral murine bone defect model[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(1): 174-182. |
28 | 王露林, 张硕杰, 唐文如, 等. Hedgehog信号通路的作用机制及研究进展[J]. 中国细胞生物学学报, 2021, 43(1): 83-92. |
29 | 靳思思. Hedgehog信号分子在雷奈酸锶体外促进骨髓间充质干细胞向成骨分化过程中的作用[D]. 广州: 南方医科大学, 2014. |
30 | 胡洁芬. Hedgehog/Gli1通路在雷奈酸锶促进骨髓间充质干细胞成骨分化过程中的作用[D]. 广州: 南方医科大学, 2015. |
31 | 谢小伟, 裴福兴, 康鹏德, 等. 锶盐联合淫羊藿苷对大鼠骨髓基质干细胞成骨及成脂分化影响的研究[J]. 中国矫形外科杂志, 2015, 23(5): 450-458. |
32 | SAIDAK Z, HAŸ E, MARTY C, et al. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling[J]. Aging Cell, 2012, 11(3): 467-474. |
33 | RYBCHYN M S, SLATER M, CONIGRAVE A D, et al. An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts[J]. J Biol Chem, 2011, 286(27): 23771-23779. |
34 | WANG B L, GUO H H, GENG T X, et al. The effect of strontium ranelate on titanium particle-induced periprosthetic osteolysis regulated by WNT/β-catenin signaling in vivo and in vitro [J]. Biosci Rep, 2021, 41(1): BSR20203003. |
35 | GENG T X, SUN S X, YU H C, et al. Strontium ranelate inhibits wear particle-induced aseptic loosening in mice[J]. Braz J Med Biol Res, 2018, 51(9): e7414. |
36 | PENG S L, ZHOU G Q, LUK K D, et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway[J]. Cell Physiol Biochem, 2009, 23(1-3): 165-174. |
37 | CHEN Y H, ZHENG Z W, ZHOU R P, et al. Developing a strontium-releasing graphene oxide-/ collagen-based organic-inorganic nanobiocomposite for large bone defect regeneration via MAPK signaling pathway[J]. ACS Appl Mater Interfaces,2019,11(17): 15986-15997. |
38 | ZHANG X R, LI H T, LIN C C, et al. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway[J]. Biomater Sci, 2018, 6(2): 418-430. |
39 | JIA X S, LONG Q Y, MIRON R J, et al. Setd2 is associated with strontium-induced bone regeneration[J]. Acta Biomater, 2017, 53: 495-505. |
40 | JIA X S, MIRON R J, YIN C C, et al. HnRNPL inhibits the osteogenic differentiation of PDLCs stimulated by SrCl2 through repressing Setd2[J]. J Cell Mol Med, 2019, 23(4): 2667-2677. |
41 | FROMIGUÉ O, HAŸ E, BARBARA A, et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate[J]. J Cell Mol Med, 2009, 13(8B): 2189-2199. |
42 | MIZUMACHI H, YOSHIDA S, TOMOKIYO A,et al. Calcium-sensing receptor-ERK signaling promotes odontoblastic differentiation of human dental pulp cells[J]. Bone, 2017, 101: 191-201. |
43 | XU Z B, BAI X Z. Strontium ranelate-induced anti-adipocytic effects are involved in negative regulation of autophagy in rat bone marrow mesenchymal stem cells[J]. Int Orthop, 2018, 42(10): 2483-2490. |
44 | BAKHIT A, KAWASHIMA N, HASHIMOTO K, et al. Strontium ranelate promotes odonto-/osteogenic differentiation/mineralization of dental papillae cells in vitro and mineralized tissue formation of the dental pulp in vivo [J]. Sci Rep, 2018, 8(1): 9224. |
45 | WANG Y K, YU X, COHEN D M, et al. Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension[J]. Stem Cells Dev, 2012, 21(7): 1176-1186. |
46 | GUO X J, WEI S L, LU M M, et al. RNA-Seq investigation and in vivo study the effect of strontium ranelate on ovariectomized rat via the involvement of ROCK1[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup1): 629-641. |
47 | MOLINUEVO M S, FERNÁNDEZ J M, CORTIZO A M,et al. Advanced glycation end products and strontium ranelate promote osteogenic differentiation of vascular smooth muscle cells in vitro: preventive role of vitamin D[J]. Mol Cell Endocrinol, 2017, 450: 94-104. |
48 | CAVERZASIO J, THOUVEREY C. Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth[J]. Cell Physiol Biochem, 2011, 27(3/4): 243-250. |
49 | FROMIGUÉ O, HAŸ E, BARBARA A, et al. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate[J]. J Biol Chem, 2010, 285(33): 25251-25258. |
50 | CHOUDHARY S, HALBOUT P, ALANDER C,et al. Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: involvement of prostaglandins[J]. J Bone Miner Res, 2007, 22(7): 1002-1010. |
51 | SOUZA R B, GOMES F I F, PEREIRA K M A, et al. Strontium ranelate elevates expression of heme oxygenase-1 and decreases alveolar bone loss in rats[J]. J Oral Maxillofac Res, 2018, 9(4): e4. |
52 | HUANG M, HILL R G, RAWLINSON S C. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair? [J]. Acta Biomater, 2016, 38: 201-211. |
53 | ABDOLLAHI BORAEI S B, NOURMOHAMMADI J, SADAT MAHDAVI F, et al. Effect of SrR delivery in the biomarkers of bone regeneration during the in vitro degradation of HNT/GN coatings prepared by EPD[J]. Colloids Surf B Biointerfaces, 2020, 190: 110944. |
54 | LOCA D, SMIRNOVA A, LOCS J, et al. Development of local strontium ranelate delivery systems and long term in vitro drug release studies in osteogenic medium[J]. Sci Rep, 2018, 8(1): 16754. |
55 | SILVA G A B, BERTASSOLI B M, SOUSA C A,et al.Effects of strontium ranelate treatment on osteoblasts cultivated onto scaffolds of trabeculae bovine bone[J]. J Bone Miner Metab, 2018, 36(1): 73-86. |
56 | NAIR B P, SINDHU M, NAIR P D. Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications[J]. Colloids Surf B Biointerfaces, 2016, 143: 423-430. |
57 | PRABHA R D, NAIR B P, DITZEL N, et al. Strontium functionalized scaffold for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2019, 94: 509-515. |
58 | MASALSKAS B F, MARTINS JÚNIOR W, LEONI G B, et al. Local delivery of strontium ranelate promotes regeneration of critical size bone defects filled with collagen sponge[J].J Biomed Mater Res A,2018,106(2): 333-341. |
59 | GÖKER F, ERSANLI S, ARISAN V, et al. Combined effect of parathyroid hormone and strontium ranelate on bone healing in ovariectomized rats[J]. Oral Dis, 2018, 24(7): 1255-1269. |
60 | STEPAN J J. Strontium ranelate: in search for the mechanism of action[J]. J Bone Miner Metab, 2013, 31(6): 606-612. |
61 | SHI C G, HU B, GUO L, et al. Strontium ranelate reduces the fracture incidence in a growing mouse model of osteogenesis imperfecta[J]. J Bone Miner Res, 2016, 31(5): 1003-1014. |
62 | FÉRON J M, MAUPRIVEZ R. Fracture repair: general aspects and influence of osteoporosis and anti-osteoporosis treatment[J]. Injury, 2016, 47(): S10-S14. |
63 | ALENEZI A, GALLI S, ATEFYEKTA S, et al. Osseointegration effects of local release of strontium ranelate from implant surfaces in rats[J]. J Mater Sci Mater Med, 2019, 30(10): 116. |
64 | KARATAS O H, TOY E, DEMIR A, et al. Effects of strontium ranelate on sutural bone formation: a histological and immunohistochemical study[J]. Aust Orthod J, 2016, 32(2): 139-147. |
65 | REGINSTER J Y, SEEMAN E, DE VERNEJOUL M C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study[J]. J Clin Endocrinol Metab, 2005, 90(5): 2816-2822. |
66 | AUDRAN M, JAKOB F J, PALACIOS S, et al. A large prospective European cohort study of patients treated with strontium ranelate and followed up over 3 years[J]. Rheumatol Int, 2013, 33(9): 2231-2239. |
67 | MEUNIER P J, ROUX C, SEEMAN E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis[J]. N Engl J Med, 2004, 350(5): 459-468. |
[1] | 马运锋,韩小飞. 丹参多酚酸酯调控SMAD2/FKBP1A/NF-κB轴对骨质疏松症大鼠破骨细胞分化和骨吸收的影响[J]. 吉林大学学报(医学版), 2022, 48(1): 111-121. |
[2] | 韩慧,于婷婷,王野弛,洪士萍,王培松,孟伟,毕铭. 原发性甲状旁腺功能亢进并发甲状腺乳头状癌伴中度贫血1例报告及文献复习[J]. 吉林大学学报(医学版), 2021, 47(5): 1287-1291. |
[3] | 孙景春, 金辉, 杨雯棋, 徐辉. 骨碎补总黄酮对骨质疏松大鼠骨组织中硬化蛋白表达的影响及其作用机制[J]. 吉林大学学报(医学版), 2020, 46(05): 911-916. |
[4] | 庞宇轩, 杨柳, 张志鹰, 李江. 三七总皂苷通过上调VEGF表达对大鼠拔牙创愈合的促进作用[J]. 吉林大学学报(医学版), 2019, 45(04): 796-800. |
[5] | 赵欢, 史册, 张雪, 李媛, 刘杰, 李杏, 胡月, 孙宏晨. 激活素受体样激酶2调控骨重塑的研究进展[J]. 吉林大学学报(医学版), 2017, 43(06): 1278-1281. |
[6] | 成洪聚, 亚白柳, 辛青, 刘文彦. 骨组织中阿片肽系统的研究进展[J]. 吉林大学学报(医学版), 2017, 43(06): 1291-1294. |
[7] | 齐鹏鹏, 孟粼, 吴梓萁, 杨涛源, 于士洋, 王景云. 骨形态发生蛋白2在牙槽骨改建中作用的研究进展[J]. 吉林大学学报(医学版), 2015, 41(03): 671-674. |
[8] | 孙宏晨, 方滕姣子, 李道伟, 朱阳, 宫海环, 张雪, 马珊珊. 微小RNA对骨重塑和炎症性骨吸收调控的研究进展[J]. 吉林大学学报(医学版), 2015, 41(01): 195-199. |
[9] | 齐慧川,张 祎,胡 敏. 实验性正畸牙移动过程中EphB4/ephrinB2促成骨作用[J]. 吉林大学学报(医学版), 2013, 39(6): 1294-1297. |
[10] | 罗云纲,曲露露,李美华 . 骨形态发生蛋白与血小板衍生性生长因子在骨形成中协同作用的研究进展[J]. 吉林大学学报(医学版), 2013, 39(5): 1085-1088. |
[11] | 那 键,马 超,霍维玲,秦瑞云,吴晓东,许 永,王 涛,谷贵山. 新型Ca2+通道TRPV5和TRPV6的研究进展[J]. 吉林大学学报(医学版), 2013, 39(3): 634-637. |
[12] | 蒋连权, 陈曦, 蔡绿树, 刘建林, 戴娟. 人重组骨形成蛋白-7对人牙周膜成纤维细胞增殖及分化能力的影响[J]. J4, 2009, 35(4): 677-680. |
[13] | 陶安军, 林崇韬, 于海霞, 李红艳, 申玉芹. 胶原膜复合rhBMP-2引导牙周组织再生的组织学观察[J]. J4, 2009, 35(4): 673-676. |
[14] | 于 娜,何 飞,谭颖徽. rhBMP2对人牙髓干细胞分化及Delta蛋白表达的影响[J]. J4, 2009, 35(2): 330-333. |
[15] | 孟培松,刘馥菲,毕良佳,胡成己,王 娜. 芦荟膏对大鼠拔牙创愈合的促进作用[J]. J4, 2008, 34(6): 998-1000. |
|