| [1] |
DU L, ZONG Y, LI H R, et al. Hyperuricemia and its related diseases: mechanisms and advances in therapy[J]. Signal Transduct Target Ther, 2024, 9(1): 212.
|
| [2] |
KUWABARA M, KODAMA T, AE R, et al. Update in uric acid, hypertension, and cardiovascular diseases[J]. Hypertens Res, 2023, 46(7): 1714-1726.
|
| [3] |
RHO Y H, ZHU Y Y, CHOI H K. The epidemiology of uric acid and fructose[J]. Semin Nephrol, 2011, 31(5): 410-419.
|
| [4] |
TORRALBA K D, DE JESUS E, RACHABATTULA S. The interplay between diet, urate transporters and the risk for gout and hyperuricemia: current and future directions[J]. Int J Rheum Dis, 2012, 15(6): 499-506.
|
| [5] |
ZHENG Y, CHEN Z R, YANG J Y, et al. The role of hyperuricemia in cardiac diseases: evidence, controversies, and therapeutic strategies[J]. Biomolecules, 2024, 14(7): 753.
|
| [6] |
范丽妃,郭玉琴,林敏,等.基于自噬途径探讨补阳还五汤合抵挡汤改善尿酸性肾病大鼠肾脏损伤的作用机制[J].中华中医药杂志,2024,39(8):3989-3995.
|
| [7] |
李东东, 刘伟伟, 周子正, 等. 降尿酸方对尿酸性肾病大鼠肾脏细胞凋亡的影响[J]. 中国中医药信息杂志, 2022, 29(6): 49-54.
|
| [8] |
夏新泽, 赖文辉, 黄 帅, 等. 2型糖尿病合并终末期肾病患者同期胰肾联合移植术后危险因素: UNOS数据库50230例分析[J]. 解放军医学杂志, 2024, 49(4): 371-379.
|
| [9] |
王倩茹,侯久文,梅其炳,等.人类肾脏疾病动物模型研究进展[J].神经药理学报,2023,13(4):29-35.
|
| [10] |
ZHENG Z H, HARMAN J L, CORESH J, et al. The dietary fructose: vitamin C intake ratio is associated with hyperuricemia in African-American adults[J]. J Nutr, 2018, 148(3): 419-426.
|
| [11] |
JOHNSON R J, NAKAGAWA T, JALAL D, et al. Uric acid and chronic kidney disease: which is chasing which?[J]. Nephrol Dial Transplant, 2013, 28(9): 2221-2228.
|
| [12] |
CALIXTO FERNANDES M H, SCHRICKER T, MAGDER S, et al. Perioperative fluid management in kidney transplantation: a black box[J]. Crit Care, 2018, 22(1): 14.
|
| [13] |
ALHUMMIANY B, SHARMA K, BUCKLEY D L, et al. Physiological confounders of renal blood flow measurement[J]. MAGMA, 2024, 37(4): 565-582.
|
| [14] |
BEIERWALTES W H, HARRISON-BERNARD L M, SULLIVAN J C, et al. Assessment of renal function; clearance, the renal microcirculation, renal blood flow, and metabolic balance[J]. Compr Physiol, 2013, 3(1): 165-200.
|
| [15] |
KO J, KANG H J, KIM D A, et al. Uric acid induced the phenotype transition of vascular endothelial cells via induction of oxidative stress and glycocalyx shedding[J]. FASEB J, 2019, 33(12): 13334-13345.
|
| [16] |
PAN J, SHI M, MA L, et al. Mechanistic insights of soluble uric acid-related kidney disease[J]. Curr Med Chem, 2020, 27(30): 5056-5066.
|
| [17] |
UEMURA T, NISHIMOTO M, ERIGUCHI M, et al. Utility of serum β2-microglobulin for prediction of kidney outcome among patients with biopsy-proven diabetic nephropathy[J]. Diabetes Obes Metab, 2024, 26(2): 583-591.
|
| [18] |
WANG Y C, HUANG M, DU X, et al. Renal tubular cell necroptosis: a novel mechanism of kidney damage in trichloroethylene hypersensitivity syndrome mice[J]. J Immunotoxicol, 2021, 18(1): 173-182.
|
| [19] |
阮颖新, 贾俊亚, 武占飞, 等. NLRP3炎症小体在大鼠单侧输尿管梗阻引起肾间质纤维化中的作用及其机制[J]. 吉林大学学报(医学版), 2024, 50(3): 587-595.
|
| [20] |
WANG M, LIN X, YANG X M, et al. Research progress on related mechanisms of uric acid activating NLRP3 inflammasome in chronic kidney disease[J]. Ren Fail, 2022, 44(1): 615-624.
|
| [21] |
BRAGA T T, FORESTO-NETO O, CAMARA N O S. The role of uric acid in inflammasome-mediated kidney injury[J]. Curr Opin Nephrol Hypertens, 2020, 29(4): 423-431.
|
| [22] |
KONO H, CHEN C J, ONTIVEROS F, et al. Uric acid promotes an acute inflammatory response to sterile cell death in mice[J]. J Clin Invest, 2010, 120(6): 1939-1949.
|
| [23] |
闫书博, 冯聪慧, 张原宾, 等. 玉米须功能性成分及药理价值研究进展[J]. 食品工程, 2023(3): 7-9.
|
| [24] |
LI H L, SHI L, CHEN X L, et al. Association between dietary intake of flavonoids and hyperuricemia: a cross-sectional study[J]. BMC Public Health, 2023, 23(1): 1227.
|
| [25] |
YE C, HUANG X J, WANG R Y, et al. Dietary inflammatory index and the risk of hyperuricemia: a cross-sectional study in Chinese adult residents[J]. Nutrients, 2021, 13(12): 4504.
|
| [26] |
LODHI S, VADNERE G P, PATIL K D, et al. Protective effects of luteolin on injury induced inflammation through reduction of tissue uric acid and pro-inflammatory cytokines in rats[J]. J Tradit Complement Med, 2019, 10(1): 60-69.
|
| [27] |
YANG Y, ZHANG J L, ZHOU Q. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: a comprehensive review[J]. Crit Rev Food Sci Nutr, 2022, 62(4): 1119-1143.
|
| [28] |
OTANI N, OUCHI M, MISAWA K, et al. Hypouricemia and urate transporters[J]. Biomedicines, 2022, 10(3): 652.
|
| [29] |
HOSOYAMADA M, TSURUMI Y, HIRANO H, et al. Urat1-Uox double knockout mice are experimental animal models of renal hypouricemia and exercise-induced acute kidney injury[J]. Nucleosides Nucleotides Nucleic Acids, 2016, 35(10-12): 543-549.
|
| [30] |
TOYODA Y, CHO S K, TASIC V, et al. Identification of a dysfunctional exon-skipping splice variant in GLUT9/SLC2A9 causal for renal hypouricemia type 2[J]. Front Genet, 2023, 13: 1048330.
|
| [31] |
ECKENSTALER R, BENNDORF R A. The role of ABCG2 in the pathogenesis of primary hyperuricemia and gout-an update[J]. Int J Mol Sci, 2021, 22(13): 6678.
|