| [1] |
JAYANTHI V S P K S A, DAS A B, SAXENA U. Recent advances in biosensor development for the detection of cancer biomarkers[J]. Biosens Bioelectron, 2017, 91: 15-23.
|
| [2] |
WANG J, KOO K M, WANG Y L, et al. Engineering state-of-the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications[J]. Adv Sci, 2019, 6(23): 1900730.
|
| [3] |
HORBINSKI C, LIGON K L, BRASTIANOS P, et al. The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients[J]. Neuro Oncol, 2019, 21(12): 1498-1508.
|
| [4] |
GAO X, LIU Y X, HUO W D, et al. RNA-cleaving DNAzymes for accurate biosensing and gene therapy[J]. Nanoscale, 2023, 15(27): 11346-11365.
|
| [5] |
ZHAO Y, LI R M, SUN J L, et al. Multifunctional DNAzyme-anchored metal-organic framework for efficient suppression of tumor metastasis[J]. ACS Nano, 2022, 16(4): 5404-5417.
|
| [6] |
HE L J, PAGNEUX Q, LARROULET I, et al. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips[J]. Biosens Bioelectron, 2017, 89: 606-611.
|
| [7] |
BREAKER R R, JOYCE G F. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity[J]. Chem Biol, 1995, 2(10): 655-660.
|
| [8] |
CHANDRA M, SACHDEVA A, SILVERMAN S K. DNA-catalyzed sequence-specific hydrolysis of DNA[J]. Nat Chem Biol, 2009, 5(10): 718-720.
|
| [9] |
FLYNN-CHARLEBOIS A, WANG Y M, PRIOR T K, et al. Deoxyribozymes with 2'-5'RNA ligase activity[J]. J Am Chem Soc, 2003, 125(9): 2444-2454.
|
| [10] |
LI Y F, BREAKER R R. Phosphorylating DNA with DNA[J]. Proc Natl Acad Sci U S A, 1999, 96(6): 2746-2751.
|
| [11] |
LI Y F, LIU Y, BREAKER R R. Capping DNA with DNA[J]. Biochemistry, 2000, 39(11): 3106-3114.
|
| [12] |
LI Y F, SEN D. A catalytic DNA for porphyrin metallation[J]. Nat Struct Mol Biol, 1996, 3(9): 743-747.
|
| [13] |
WALSH S M, SACHDEVA A, SILVERMAN S K. DNA catalysts with tyrosine kinase activity[J]. J Am Chem Soc, 2013, 135(40): 14928-14931.
|
| [14] |
KUMAR S, JAIN S, DILBAGHI N, et al. Advanced selection methodologies for DNAzymes in sensing and healthcare applications[J]. Trends Biochem Sci, 2019, 44(3): 190-213.
|
| [15] |
MCCONNELL E M, COZMA I, MOU Q B, et al. Biosensing with DNAzymes[J]. Chem Soc Rev, 2021, 50(16): 8954-8994.
|
| [16] |
ZHANG R, WU J, AO H, et al. A rolling circle-amplified G-quadruplex/hemin DNAzyme for chemiluminescence immunoassay of the SARS-CoV-2 protein[J]. Anal Chem, 2021, 93(28): 9933-9938.
|
| [17] |
WU Q, WANG H, GONG K K, et al. Construction of an autonomous nonlinear hybridization chain reaction for extracellular vesicles-associated microRNAs discrimination[J]. Anal Chem, 2019, 91(15): 10172-10179.
|
| [18] |
YANG L, WU Q, CHEN Y Q, et al. Amplified microRNA detection and intracellular imaging based on an autonomous and catalytic assembly of DNAzyme[J]. ACS Sens, 2019, 4(1): 110-117.
|
| [19] |
SAMARIDOU E, HEYES J, LUTWYCHE P. Lipid nanoparticles for nucleic acid delivery: Current perspectives[J]. Adv Drug Deliv Rev, 2020, 154/155: 37-63.
|
| [20] |
LEGIEWICZ M, LOZUPONE C, KNIGHT R, et al. Size, constant sequences, and optimal selection[J]. Rna, 2005, 11(11): 1701-1709.
|
| [21] |
MUÑOZ-GONZÁLEZ M, SILVA-GALLEGUILLOS V, PARRA-MENESES V, et al. Catalytic mechanisms of the 8-17 and 10-23 DNAzymes: shared mechanistic strategies[J]. Org Biomol Chem, 2025, 23(19): 4564-4577.
|
| [22] |
BROWN A K, LI J, PAVOT C M, et al. A lead-dependent DNAzyme with a two-step mechanism[J]. Biochemistry, 2003, 42(23): 7152-7161.
|
| [23] |
CAIRNS M J. Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites[J]. Nucleic Acids Res, 2003, 31(11): 2883-2889.
|
| [24] |
LIU H H, YU X, CHEN Y Q, et al. Crystal structure of an RNA-cleaving DNAzyme[J]. Nat Commun, 2017, 8: 2006.
|
| [25] |
CIESLAK M, SZYMANSKI J, ADAMIAK R W, et al. Structural rearrangements of the 10–23 DNAzyme to β3 integrin subunit mRNA induced by cations and their relations to the catalytic activity[J]. J Biol Chem, 2003, 278(48): 47987-47996.
|
| [26] |
YI J T, CHEN T T, HUO J, et al. Nanoscale zeolitic imidazolate framework-8 for ratiometric fluorescence imaging of microRNA in living cells[J]. Anal Chem, 2017, 89(22): 12351-12359.
|
| [27] |
FAN H H, ZHAO Z L, YAN G B, et al. A smart DNAzyme-MnO2 nanosystem for efficient gene silencing[J]. Angew Chem Int Ed, 2015, 54(16): 4801-4805.
|
| [28] |
WANG H M, CHEN Y Q, WANG H, et al. DNAzyme-loaded metal-organic frameworks (MOFs) for self-sufficient gene therapy[J]. Angew Chem Int Ed, 2019, 58(22): 7380-7384.
|
| [29] |
ZHANG C Y, LI Q T, XU T B, et al. New DNA-hydrolyzing DNAs isolated from an ssDNA library carrying a terminal hybridization stem[J]. Nucleic Acids Res, 2021, 49(11): 6364-6374.
|
| [30] |
BORGGRÄFE J, VICTOR J, ROSENBACH H, et al. Time-resolved structural analysis of an RNA-cleaving DNA catalyst[J]. Nature, 2022, 601(7891): 144-149.
|
| [31] |
SOUKUP G A, BREAKER R R. Nucleic acid molecular switches[J]. Trends Biotechnol, 1999, 17(12): 469-476.
|
| [32] |
YANG Y J, HUANG J, YANG X H, et al. Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells[J]. Anal Chem, 2016, 88(11): 5981-5987.
|
| [33] |
TANG W X, HU J H, LIU D R. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation[J]. Nat Commun, 2017, 8: 15939.
|
| [34] |
ZHENG X D, YANG J, ZHOU C J, et al. Allosteric DNAzyme-based DNA logic circuit: operations and dynamic analysis[J]. Nucleic Acids Res, 2019, 47(3): 1097-1109.
|
| [35] |
GAO Y S, ZHANG S B, WU C W, et al. Self-protected DNAzyme walker with a circular bulging DNA shield for amplified imaging of miRNAs in living cells and mice[J]. ACS Nano, 2021, 15(12): 19211-19224.
|
| [36] |
STOJANOVIC M N, DE PRADA P, LANDRY D W. Catalytic molecular beacons[J]. ChemBioChem, 2001, 2(6): 411-415.
|
| [37] |
WANG D Y, SEN D. A novel mode of regulation of an RNA-cleaving DNAzyme by effectors that bind to both enzyme and substrate[J]. J Mol Biol, 2001, 310(4): 723-734.
|
| [38] |
WU Y N, HUANG J, YANG X H, et al. Gold nanoparticle loaded split-DNAzyme probe for amplified miRNA detection in living cells[J]. Anal Chem, 2017, 89(16): 8377-8383.
|
| [39] |
ZHU D, WEI Y Q, SUN T, et al. Encoding DNA frameworks for amplified multiplexed imaging of intracellular microRNAs[J]. Anal Chem, 2021, 93(4): 2226-2234.
|
| [40] |
WANG X Y, FENG M L, XIAO L, et al. Postsynthetic modification of DNA phosphodiester backbone for photocaged DNAzyme[J]. ACS Chem Biol, 2016, 11(2): 444-451.
|
| [41] |
YOUNG D D, LIVELY M O, DEITERS A. Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells[J]. J Am Chem Soc, 2010, 132(17): 6183-6193.
|
| [42] |
TORABI S F, WU P W, MCGHEE C E, et al. In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing[J]. Proc Natl Acad Sci U S A, 2015, 112(19): 5903-5908.
|
| [43] |
YANG Z L, LOH K Y, CHU Y T, et al. Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles[J]. J Am Chem Soc, 2018, 140(50): 17656-17665.
|
| [44] |
KNUTSON S D, SANFORD A A, SWENSON C S, et al. Thermoreversible control of nucleic acid structure and function with glyoxal caging[J]. J Am Chem Soc, 2020, 142(41): 17766-17781.
|
| [45] |
XIAO L, GU C M, XIANG Y. Orthogonal activation of RNA-cleaving DNAzymes in live cells by reactive oxygen species[J]. Angew Chem Int Ed, 2019, 58(40): 14167-14172.
|
| [46] |
LIN Y, YANG Z L, LAKE R J, et al. Enzyme-mediated endogenous and bioorthogonal control of a DNAzyme fluorescent sensor for imaging metal ions in living cells[J]. Angew Chem Int Ed, 2019, 58(47): 17061-17067.
|
| [47] |
WANG Z, YANG J, QIN G, et al. An intelligent nanomachine guided by DNAzyme logic system for precise chemodynamic therapy[J]. Angew Chem Int Ed, 2022, 61(38): e202204291.
|
| [48] |
WANG R, HE W H, YI X, et al. Site-specific bioorthogonal activation of DNAzymes for on-demand gene therapy[J]. J Am Chem Soc, 2023, 145(32): 17926-17935.
|
| [49] |
ILCHOVSKA D D, BARROW D M. An Overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL and related nutritional interventions[J]. Autoimmun Rev, 2021, 20(2): 102741.
|
| [50] |
TIAN L, ZHANG J Y, ZHANG Y, et al. Bipedal DNAzyme walker triggered dual-amplification electrochemical platform for ultrasensitive ratiometric biosensing of microRNA-21[J]. Biosens Bioelectron, 2023, 220: 114879.
|
| [51] |
HOSSEINZADEH E, RAVAN H, MOHAMMADI A, et al. Target-triggered three-way junction in conjugation with catalytic concatemers-functionalized nanocomposites provides a highly sensitive colorimetric method for miR-21 detection[J]. Biosens Bioelectron, 2018, 117: 567-574.
|
| [52] |
YI D Y, ZHAO J, LI L L. An enzyme-activatable engineered DNAzyme sensor for cell-selective imaging of metal ions[J]. Angew Chem Int Ed, 2021, 60(12): 6300-6304.
|
| [53] |
WANG X J, KIM G, CHU J L, et al. Noninvasive and spatiotemporal control of DNAzyme-based imaging of metal ions in vivo using high-intensity focused ultrasound[J]. J Am Chem Soc, 2022, 144(13): 5812-5819.
|
| [54] |
HE X J, YAN Y L, DELAURIER A, et al. Observation of miRNA gene expression in zerbrafish embryos by in situ hybridization to microRNA primary transcripts[J]. Zerbrafish, 2011, 8(1): 1-8.
|
| [55] |
MENG X D, ZHANG K, YANG F, et al. Biodegradable metal-organic frameworks power DNAzyme for in vivo temporal-spatial control fluorescence imaging of aberrant microRNA and hypoxic tumor[J]. Anal Chem, 2020, 92(12): 8333-8339.
|
| [56] |
WEI J, WANG H M, WU Q, et al. A smart, autocatalytic, DNAzyme biocircuit for in Vivo, amplified, microRNA imaging[J]. Angew Chem Int Ed, 2020, 59(15): 5965-5971.
|
| [57] |
LIU C Z, CHEN Y X, ZHAO J, et al. Self-assembly of copper-DNAzyme nanohybrids for dual-catalytic tumor therapy[J]. Angew Chem Int Ed, 2021, 60(26): 14324-14328.
|
| [58] |
MOLDEN T A, NICCUM C T, KOLPASHCHIKOV D M. Cut and paste for cancer treatment: a DNA nanodevice that cuts out an RNA marker sequence to activate a therapeutic function[J]. Angew Chem Int Ed, 2020, 59(47): 21190-21194.
|
| [59] |
ZHAO H X, ZHANG Z L, ZUO D, et al. A synergistic DNA-polydopamine-MnO2 nano complex for near-infrared-light-powered DNAzyme-mediated gene therapy[J]. Nano Lett, 2021, 21(12): 5377-5385.
|
| [60] |
WANG J, YU S S, WU Q, et al. A self-catabolic multifunctional DNAzyme nanosponge for programmable drug delivery and efficient gene silencing[J]. Angew Chem Int Ed, 2021, 60(19): 10766-10774.
|