| [1] |
DEWSON G, EICHHORN P J A, KOMANDER D. Deubiquitinases in cancer[J]. Nat Rev Cancer, 2023, 23(12): 842-862.
|
| [2] |
BALAKIREV M Y, TCHERNIUK S O, JAQUINOD M, et al. Otubains: a new family of cysteine proteases in the ubiquitin pathway[J]. EMBO Rep, 2003, 4(5): 517-522.
|
| [3] |
DU J S, FU L, SUI Y L, et al. The function and regulation of OTU deubiquitinases[J]. Front Med, 2020, 14(5): 542-563.
|
| [4] |
NANAO M H, TCHERNIUK S O, CHROBOCZEK J, et al. Crystal structure of human otubain 2[J]. EMBO Rep, 2004, 5(8): 783-788.
|
| [5] |
MEVISSEN T E, HOSPENTHAL M K, GEURINK P P, et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis[J]. Cell, 2013, 154(1): 169-184.
|
| [6] |
XUE C Y, GREENE E C. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing[J]. Trends Genet, 2021, 37(7): 639-656.
|
| [7] |
WAN Q Y, CHEN Q, CAI D G, et al. OTUB2 promotes homologous recombination repair through stimulating Rad51 expression in endometrial cancer[J]. Cell Transplant, 2020, 29: 963689720931433.
|
| [8] |
DEMEYER A, BENHELLI-MOKRANI H, CHÉNAIS B, et al. Inhibiting homologous recombination by targeting RAD51 protein[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188597.
|
| [9] |
NAKADA S. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice[J]. J Radiat Res, 2016, 57 (): i33-i40.
|
| [10] |
KATO K, NAKAJIMA K, UI A, et al. Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice[J]. Mol Cell, 2014, 53(4): 617-630.
|
| [11] |
MENG Z P, MOROISHI T, GUAN K L. Mechanisms of Hippo pathway regulation[J]. Genes Dev, 2016, 30(1): 1-17.
|
| [12] |
ZHANG Z K, DU J J, WANG S, et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ[J]. Mol Cell, 2019, 73(1): 7-21.
|
| [13] |
LIU L, CHENG H, JI M, et al. OTUB2 regulates YAP1/TAZ to promotes the progression of esophageal squamous cell carcinoma[J]. Biol Proced Online, 2022, 24(1): 10.
|
| [14] |
PIKARSKY E, PORAT R M, STEIN I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer[J]. Nature, 2004, 431(7007): 461-466.
|
| [15] |
BAUD V, KARIN M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls[J]. Nat Rev Drug Discov, 2009, 8(1): 33-40.
|
| [16] |
LIU F, XIA Y, PARKER A S, et al. IKK biology[J]. Immunol Rev, 2012, 246(1): 239-253.
|
| [17] |
CHEN Z J. Ubiquitination in signaling to and activation of IKK[J]. Immunol Rev, 2012, 246(1): 95-106.
|
| [18] |
LI S, ZHENG H, MAO A P, et al. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6[J]. J Biol Chem, 2010, 285(7): 4291-4297.
|
| [19] |
MA Y F, SUN Y. MiR-29a-3p inhibits growth, proliferation, and invasion of papillary thyroid carcinoma by suppressing NF-κB signaling via direct targeting of OTUB2[J]. Cancer Manag Res, 2019, 11: 13-23.
|
| [20] |
GU Z L, HUANG J, ZHEN L L. Knockdown of otubain 2 inhibits liver cancer cell growth by suppressing NF-κB signaling[J]. Kaohsiung J Med Sci, 2020, 36(6): 399-404.
|
| [21] |
REVATHIDEVI S, MUNIRAJAN A K. Akt in cancer: mediator and more[J]. Semin Cancer Biol, 2019, 59: 80-91.
|
| [22] |
LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203.
|
| [23] |
LI J, CHENG D D, ZHU M X, et al. OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer[J]. Theranostics, 2019, 9(1): 179-195.
|
| [24] |
LU J R, TAN M, CAI Q S. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism[J]. Cancer Lett, 2015, 356(2 Pt A): 156-164.
|
| [25] |
SONG Y, WU Q W. RBM15 m6A modification-mediated OTUB2 upregulation promotes cervical cancer progression via the AKT/mTOR signaling[J]. Environ Toxicol, 2023, 38(9): 2155-2164.
|
| [26] |
YU S Y, ZANG W C, QIU Y C, et al. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis[J]. Oncogene, 2022, 41(1): 46-56.
|
| [27] |
ZHANG Q, ZHANG J, YAO A M, et al. OTUB2 promotes the progression of endometrial cancer by regulating the PKM2-mediated PI3K/AKT signaling pathway[J]. Cell Biol Int, 2023, 47(2): 428-438.
|
| [28] |
HU G, YANG J W, ZHANG H W, et al. OTUB2 promotes proliferation and migration of hepatocellular carcinoma cells by PJA1 deubiquitylation[J]. Cell Mol Bioeng, 2022, 15(3): 281-92.
|
| [29] |
XU X, WU G T, HAN K K, et al. Inhibition of OTUB2 suppresses colorectal cancer cell growth by regulating β-Catenin signaling[J]. Am J Cancer Res, 2023, 13(11): 5382-5393.
|
| [30] |
DOUMPAS N, LAMPART F, ROBINSON M D, et al. TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes[J]. EMBO J, 2019, 38(2):e98873.
|
| [31] |
LIU K C, ZHAO T T, WANG J K, et al. Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer[J]. Cancer Lett, 2019, 458: 21-28.
|
| [32] |
ZHANG Y W, ZHANG H M, WANG C Y, et al. circRNA6448-14/miR-455-3p/OTUB2 axis stimulates glycolysis and stemness of esophageal squamous cell carcinoma[J]. Aging, 2024, 16(11): 9485-9497.
|
| [33] |
CHANG W, LUO Q Y, WU X W, et al. OTUB2 exerts tumor-suppressive roles via STAT1-mediated CALML3 activation and increased phosphatidylserine synthesis[J]. Cell Rep, 2022, 41(4): 111561.
|
| [34] |
REN W F, XU Z L, CHANG Y T, et al. Pharmaceutical targeting of OTUB2 sensitizes tumors to cytotoxic T cells via degradation of PD-L1[J]. Nat Commun, 2024, 15(1): 9.
|
| [35] |
YI M, ZHENG X L, NIU M K, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions[J]. Mol Cancer, 2022, 21(1): 28.
|
| [36] |
HU X L, WANG J, CHU M, et al. Emerging role of ubiquitination in the regulation of PD-1/PD-L1 in cancer immunotherapy[J]. Mol Ther, 2021, 29(3): 908-919.
|
| [37] |
NAN Y B, WU X W, LUO Q Y, et al. OTUB2 silencing promotes ovarian cancer via mitochondrial metabolic reprogramming and can be synthetically targeted by CA9 inhibition[J]. Proc Natl Acad Sci U S A, 2024, 121(19): e2315348121.
|
| [38] |
NANDI D, CHEEMA P S, JAISWAL N, et al. FoxM1: Repurposing an oncogene as a biomarker[J]. Semin Cancer Biol, 2018, 52(Pt 1): 74-84.
|
| [39] |
XIAO J, WANG L Q, ZHUANG Y, et al. The deubiquitinase OTUB2 promotes cervical cancer growth through stabilizing FOXM1[J]. Am J Transl Res, 2024, 16(1): 75-84.
|
| [40] |
PERONE Y, FARRUGIA A J, RODRÍGUEZ-MEIRA A, et al. SREBP1 drives Keratin-80-dependent cytoskeletal changes and invasive behavior in endocrine-resistant ERα breast cancer[J]. Nat Commun, 2019, 10(1): 2115.
|
| [41] |
OUYANG S W, ZENG Z Y, LIU Z, et al. OTUB2 regulates KRT80 stability via deubiquitination and promotes tumour proliferation in gastric cancer[J]. Cell Death Discov, 2022, 8(1): 45.
|
| [42] |
SONG H, XU Y X, XU T, et al. CircPIP5K1A activates KRT80 and PI3K/AKT pathway to promote gastric cancer development through sponging miR-671-5p[J]. Biomedecine Pharmacother, 2020, 126: 109941.
|