| [1] |
WEBB P M, JORDAN S J. Global epidemiology of epithelial ovarian cancer[J]. Nat Rev Clin Oncol, 2024, 21(5): 389-400.
|
| [2] |
TORRE L A, TRABERT B, DESANTIS C E, et al. Ovarian cancer statistics, 2018[J]. CA A Cancer J Clin, 2018, 68(4): 284-296.
|
| [3] |
BRIDGES M C, DAULAGALA A C, KOURTIDIS A. LNCcation: lncRNA localization and function[J]. J Cell Biol, 2021, 220(2): e202009045.
|
| [4] |
ZHANG Q, WU E Z, TANG Y H, et al. Deeply mining a universe of peptides encoded by long noncoding RNAs[J]. Mol Cell Proteomics, 2021, 20: 100109.
|
| [5] |
HERMAN A B, TSITSIPATIS D, GOROSPE M. Integrated lncRNA function upon genomic and epigenomic regulation[J]. Mol Cell, 2022, 82(12): 2252-2266.
|
| [6] |
HE S L, CHEN Y L, CHEN Q H, et al. LncRNA KCNQ1OT1 promotes the metastasis of ovarian cancer by increasing the methylation of EIF2B5 promoter[J]. Mol Med, 2022, 28(1): 112.
|
| [7] |
YU X, ZHAO P F, LUO Q Y, et al. RUNX1-IT1 acts as a scaffold of STAT1 and NuRD complex to promote ROS-mediated NF-κB activation and ovarian cancer progression[J]. Oncogene, 2024, 43(6): 420-433.
|
| [8] |
LIN H, XU X, CHEN K L, et al. LncRNA CASC15, miR-23b cluster and SMAD3 form a novel positive feedback loop to promote epithelial-mesenchymal transition and metastasis in ovarian cancer[J]. Int J Biol Sci, 2022, 18(5): 1989-2002.
|
| [9] |
KARPOV D S, SPIRIN P V, ZHELTUKHIN A O, et al. LINC00973 induces proliferation arrest of drug-treated cancer cells by preventing p21 degradation[J]. Int J Mol Sci, 2020, 21(21): 8322.
|
| [10] |
ZINOVIEVA O L, GRINEVA E N, PROKOFJEVA M M, et al. Expression of long non-coding RNA LINC00973 is consistently increased upon treatment of colon cancer cells with different chemotherapeutic drugs[J]. Biochimie, 2018, 151: 67-72.
|
| [11] |
LIU Y B, LI X Z, ZHANG C M, et al. LINC00973 is involved in cancer immune suppression through positive regulation of Siglec-15 in clear-cell renal cell carcinoma[J]. Cancer Sci, 2020, 111(10): 3693-3704.
|
| [12] |
GUO Q, LI D, LUO X Y, et al. The regulatory network and potential role of LINC00973-miRNA-mRNA ceRNA in the progression of non-small-cell lung cancer[J]. Front Immunol, 2021, 12: 684807.
|
| [13] |
TADIĆ V, ZHANG W, BROZOVIC A. The high-grade serous ovarian cancer metastasis and chemoresistance in 3D models[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(1): 189052.
|
| [14] |
CAI Y S, LYU T, LI H, et al. LncRNA CEBPA-DT promotes liver cancer metastasis through DDR2/β-catenin activation via interacting with hnRNPC[J]. J Exp Clin Cancer Res, 2022, 41(1): 335.
|
| [15] |
XIU B Q, CHI Y Y, LIU L, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription[J]. Mol Cancer, 2019, 18(1): 187.
|
| [16] |
WANG Y, LIU F, CHEN L, et al. Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncRNA MIR503HG to activate the NF-κB/NLRP3 inflammasome pathway[J]. Front Immunol, 2022, 13: 867516.
|
| [17] |
HU H F, HAN L, FU J Y, et al. LINC00982-encoded protein PRDM16-DT regulates CHEK2 splicing to suppress colorectal cancer metastasis and chemoresistance[J]. Theranostics, 2024, 14(8): 3317-3338.
|
| [18] |
TONG L L, WANG Y Y, AO Y, et al. CREB1 induced lncRNA HAS2-AS1 promotes epithelial ovarian cancer proliferation and invasion via the miR-466/RUNX2 axis[J]. Biomed Pharmacother, 2019, 115: 108891.
|
| [19] |
LIU J, ZHU Y, WANG H, et al. LINC00629, a HOXB4-downregulated long noncoding RNA, inhibits glycolysis and ovarian cancer progression by destabilizing c-Myc[J]. Cancer Sci, 2024, 115(3): 804-819.
|
| [20] |
LI Y, LOU S H, ZHANG J, et al. m6A methylation-mediated regulation of LncRNA MEG3 suppresses ovarian cancer progression through miR-885-5p and the VASH1 pathway[J]. J Transl Med, 2024, 22(1): 113.
|
| [21] |
FARDI M, ALIVAND M, BARADARAN B, et al. The crucial role of ZEB2: from development to epithelial-to-mesenchymal transition and cancer complexity[J]. J Cell Physiol, 2019, 234(9): 14783-14799.
|
| [22] |
SáNCHEZ-TILLó E, PEDROSA L, VILA I, et al. The EMT factor ZEB1 paradoxically inhibits EMT in BRAF-mutant carcinomas[J]. JCI Insight, 2023, 8(20):e164629.
|
| [23] |
POULIQUEN D L, BOISSARD A, HENRY C, et al. Curcuminoids as modulators of EMT in invasive cancers: a review of molecular targets with the contribution of malignant mesothelioma studies[J]. Front Pharmacol, 2022, 13: 934534.
|
| [24] |
SUN Z Q, SHAO B, LIU Z Q, et al. LINC01296/miR-141-3p/ZEB1-ZEB2 axis promotes tumor metastasis via enhancing epithelial-mesenchymal transition process[J]. J Cancer, 2021, 12(9): 2723-2734.
|
| [25] |
LI Y Y, FEI H, LIN Q W, et al. ZEB2 facilitates peritoneal metastasis by regulating the invasiveness and tumorigenesis of cancer stem-like cells in high-grade serous ovarian cancers[J]. Oncogene, 2021, 40(32): 5131-5141.
|
| [26] |
TATTI O, GUCCIARDO E, PEKKONEN P, et al. MMP16 mediates a proteolytic switch to promote cell-cell adhesion, collagen alignment, and lymphatic invasion in melanoma[J]. Cancer Res, 2015, 75(10): 2083-2094.
|
| [27] |
YAN P F, WANG J, LIU H Y, et al. M1 macrophage-derived exosomes containing miR-150 inhibit glioma progression by targeting MMP16[J]. Cell Signal, 2023, 108: 110731.
|
| [28] |
YANG F Q, ZHANG J Q, JIN J J, et al. HOXA11-AS promotes the growth and invasion of renal cancer by sponging miR-146b-5p to upregulate MMP16 expression[J]. J Cell Physiol, 2018, 233(12): 9611-9619.
|
| [29] |
LI Y Y, WANG Y, YU L, et al. miR-146b-5p inhibits glioma migration and invasion by targeting MMP16[J]. Cancer Lett, 2013, 339(2): 260-269.
|
| [30] |
LIU Q, LI A P, TIAN Y J, et al. The CXCL8-CXCR1/2 pathways in cancer[J]. Cytokine Growth Factor Rev, 2016, 31: 61-71.
|
| [31] |
PIAO H Y, FU L F, WANG Y X, et al. A positive feedback loop between gastric cancer cells and tumor-associated macrophage induces malignancy progression[J]. J Exp Clin Cancer Res, 2022, 41(1): 174.
|
| [32] |
FU X R, WANG Q M, DU H, et al. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer[J]. Front Immunol, 2023, 14: 1159061.
|
| [33] |
ZHANG N, LIU Y Y, WANG Y Y, et al. Decitabine reverses TGF-β1-induced epithelial-mesenchymal transition in non-small-cell lung cancer by regulating miR-200/ZEB axis[J]. Drug Des Devel Ther, 2017, 11: 969-983.
|
| [34] |
CHOI P W, NG S W. The functions of microRNA-200 family in ovarian cancer: beyond epithelial-mesenchymal transition[J]. Int J Mol Sci, 2017, 18(6): 1207.
|
| [35] |
ZHAO M N, ZHANG L F, SUN Z, et al. A novel microRNA-182/Interleukin-8 regulatory axis controls osteolytic bone metastasis of lung cancer[J]. Cell Death Dis, 2023, 14(5): 298.
|