[1] 贾建平, 周爱红.中国老年人轻度认知障碍的患病率和病因亚型研究 [J].中华内科杂志, 2014, 53 (5):411.
[2] Cao X, Yeo G, Muotri AR, et al. Noncoding RNAs in the mammalian central nervous system [J]. AnnuRev Neurosci, 2006, 29(29):77-103.
[3] 张 敏, 吴 洁. 微小RNA与认知功能障碍 [J]. 国际妇产科学杂志, 2013, 40(3):230-233.
[4] Zhang R,Zhang Q, Niu J, et al. Screening of microRNAs associated with Alzheimer's disease using oxidative stress cell model and different strains of senescence accelerated mice [J]. J Neurol Sci, 2014, 338(1/2):57-64.
[5] Petersen RC. Mild cognitive impairment as a diagnostic entity [J]. J Intern Med, 2004, 256(3):183-194.
[6] 俞焙秦, 刘炳亚. miRNA的生物学特性和功能 [J]. 上海交通大学学报:医学版, 2007, 27(5):621-623.
[7] Wang WX, Huang Q, Hu Y, et al. Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex:white matter versus gray matter [J]. Acta Neuropathol, 2011, 121(2):193-205.
[8] Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1 [J]. J Neurosci, 2008, 28(5):1213-1223.
[9] Lee ST, Chu K, Jung KH, et al. MiR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model [J]. Ann Neurol, 2012, 72(2):269-277.
[10] Yang D, Li T, Wang Y, et al. MiR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression [J]. J Cell Sci, 2012, 125(7):1673-1682.
[11] Moon J,Lee ST,Sunwoo JS, et al. Early diagnosis of Alzheimer's disease from elevated olfactory mucosal miR-206 level [DB/OL]. Sci Rep, 2016,6:20364 doi:10.1038/srep20364.
[12] Strum JC, Johnson JH, Ward J, et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through stress-induced chemokine production through repression of Sirt1 [J]. Mol Endocrinol, 2009, 23(11):1876-1884.
[13] Mertz K, Koscheck T, Schilling K. Brain-derived neurotrophic factor modulates dendritic morphology of cerebellar basket and stellate cells:an in vitro study [J]. Neuroscience, 2000, 97(2):303-310.
[14] Gao X, Smith GM, Chen J. Impaired dendritic development and synaptic formation of postnatal-born dentate gyrus granular neurons in the absence of brain-derived neurotrophic factor signaling [J]. Exp Neurol, 2009, 215(1):178-190.
[15] Chapleau CA, Carlo ME, Larimore JL, et al. The actions of BDNF on dendritic spine density and morphology in organotypic slice cultures depend on the presence of serum in culture media [J]. J Neurosci Methods, 2008, 169(1):182-190.
[16] Peng S, Garzon DJ, Marchese M, et al. Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer's disease [J]. J Neurosci, 2009, 29(29):9321-9329.
[17] Tang Y, Xu J, Qu W, et al. Resveratrol reduces vascular cell senescence through attenuation of oxidative stress by SIRT1/NADPH oxidase-dependent mechanisms [J]. J Nutr Biochem, 2012, 23(11):1410-1416.
[18] Michán S, Li Y, Chou MM, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity [J]. J Neurosci, 2010, 30(29):9695-9707. |