[1] SHAO H,KE X,LIU A. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect[J]. Biofabrication, 2017, 9(2):1-23. [2] CHEN C L, ZENGA J, Roland L T. Complications of double free flap and free flap combined with locoregional flap in head and neck reconstruction:A systematic review[J]. J Sci Special Head Neck, 2018, 40(3):632-646. [3] SATTESON E S, SATTESON A C, WALTONEN J D,et al. Donor-site outcomes for the osteocutaneous radial forearm free flap[J]. J Reconstruct Microsurg, 2017, 33(8):544-548. [4] ZHONG J, SHAO Z. Growth and crystallization of calcium phosohate mediated by bombyx mori silk fibrion[J]. Acta Polymer Sinica, 2014, (10):1428-1434. [5] 贺超良,汤朝晖,田华雨,等. 3D打印技术制备生物医用高分子材料的研究进展[J]. 高分子学报,2013(6):722-723. [6] TANG Q, HU Z C, JIN H M,et al. Microporous polysaccharide multilayer coated BCP composite scaffoldds with immobilised calcitriol promote osteoporotic bone regeneration both in vitro and in vivo[J]. Theranostics,2019, 9(4):1125-1143. [7] JIANG J, HAO W, LI Y Z, et al. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells[J]. Biotechnol Lett,2013, 35(4):657-661. [8] ZAN X J, SITASUWAN P, FENG S, et al. Effect of roughness on in situ biomineralized CaP-collagen coating on the osteogenesis of mesenchymal stem cells[J]. Langmuir,2016, 32(7):1808-1817. [9] KIM J W, SHIN Y C, LEE J J, et al. The effect of reduced graphene oxide-coated biphasic calcium phosphate bone graft material on osteogenesis[J]. Int J Mol Sci, 2017, 18(8):1-17. [10] HUANG L X, XIAO L, POUDEL A J, et al. Porous chitosan microspheres as microcarriers for 3D cell culture[J]. Carbohydrate Polymers, 2018, 202:611-620. [11] WANG H, HU M. Recent progress on 3D printed tissue engineering scaffolds of the jaws[J]. J Oral Maxillofac Surg,2017, 27(3):218-222. [12] PINA S, CANADAS R F, JIMÉNEZ G, et al. Biofunctional ionic-doped calcium phosphates:silk fibroin composites for bone tissue engineering scaffolding[J]. Cells Tissues Organs(Print),2017, 204(3/4):150-163. [13] DADHICH P,DAS B,PAL P,et al. A simple approach for an eggshell-based 3D-printed osteoinductive multiphasic calcium phosphate scaffold[J]. ACS Appl Mater Interfaces, 2016, 8(19):11910-11924. [14] HU J X, CAI X, MO S B, et al. Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering[J]. Chin J Polymer Sci,2015, 33(12):1661-1671. [15] 尤琦. 三维打印技术构建双相磷酸钙陶瓷支架及其性能研究[D]. 长春:吉林大学,2016. [16] 夏轶超,澈力格尔,李宝印,等. 壳聚糖膜覆盖3D打印双相磷酸钙骨组织工程支架的制备和性能[J]. 吉林大学学报:医学版, 2018,44(4):770-775. [17] LI C, ZHANG Z, HE CL. Biodegradable thermo-sensitive hydrogels for controlled delivery of parathyroid hormone related peptide[J]. Acta Polymer Sinica,2012, 12(7):778-783. [18] ZHANG X, KONG M, TIAN MP. The temperature-responsive hydroxybutyl chitosan hydrogels with poly-dopamine coating for cell sheet transplantation[J]. IntJ Biol Macromol,2018, 120:152-158. [19] KAOCT, CHEN Y J, NG H Y, et al. Surface modification of calcium silicate via mussel-inspired polydopamine and effective adsorption of extracellular matrix to promote osteogenesis differentiation for bone tissue engineering[J]. Materials(Basel), 2018, 11(9):E1664. [20] MA H S, LUO J, SUN Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration[J]. Biomaterials, 2016, 111:138-148. [21] PAN Z, QU Z H, ZHANG Z, et al. Particle-collision and porogen-leaching technique to fabricate polymeric porous scaffolds with microscale roughness of interior surfaces[J]. Chin J Polymer Sci, 2013, 31(5):737-747. [22] 龚华俊,杨小平,陈国强,等. 电纺丝法制备聚乳酸/多壁碳纳米管/羟基磷灰石杂化纳米纤维的研究[J]. 高分子学报,2005(2):297-300. [23] 李保强,胡巧玲,钱秀珍,等. 原位沉析法制备可吸收壳聚糖/羟基磷灰石棒材[J]. 高分子学报,2002(6):828-833. [24] ZHU J, LUO J J, ZHAO X Y, et al. Electrospun homogeneous silk fibroin/poly(-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering[J]. J Biomater Appl,2016, 31(3):421-437. [25] KAO C T,LIN C C, CHEN Y W, et al. Poly (dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering[J]. Mater Sci Engineer C,2015, 56:165-173. [26] 殷俊飞扬,钟静,陈莉智,等. 3D打印技术在颌面整形外科的应用进展[J].中国医用物理学杂志, 2018, 35(12):1479-1482. [27] GE M, XUE L,NIE T T,et al. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells[J]. J Biomater Sci Polym Ed,2016, 27(17):1685-1697. [28] JO A R,NONG M W, CHO Y S, et al. Assessment of cell proliferation in knitting scaffolds with respect to pore-size heterogeneity, surface wettability, and surface roughness[J]. J Appl Polymer Sci, 2015, 32(38):1-13. [29] GOLIZADEH M,KARIMA A, GANDOMI-RAVANDI S,et al. Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers[J]. Carbohydrate Polymers,2019, 207:796-805. [30] ZHU Y L, ZHU R Q, MA J. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering[J]. Biomed Mater, 2015, 10(5):055009. [31] DANILEVICIUS P,GEORGIADI L,PATEMAN C J,et al. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds[J]. Appl Surface Sci, 2015,336:2-10. [32] MICHAEL S, LAURA K, ANKE B. 3D powder printed bioglass and beta-tricalcium phosphate bone scaffolds[J]. Materials, 2018, 11(2):1-21. [33] GETHIN R O, MICHEL D, HANNU L. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects[J]. J Biomed Mater Res Part B-Appl Biomater, 2018, 106(6):2493-2512. |