[1] AMBROS V. The functions of animal microRNAs[J]. Nature, 2004,431(7006):350-355. [2] DOENCH J G, SHARP P A. Specificity of microRNA target selection in translational repression[J]. Genes Dev, 2004,18(5):504-511. [3] HOSIN A A, PRASAD A, VⅡRI L E,et al. MicroRNAs in atherosclerosis[J]. J Vasc Res, 2015, 51(5):338-349. [4] SAVITT J M, DAWSON V L, DAWSON T M. Diagnosis and treatment of Parkinson disease:molecules to medicine[J]. J Clin Invest, 2006, 116(7):1744-1754. [5] LEE Y, AHN C, HAN J J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing[J]. Nature, 2003,425(6956):415-419. [6] XIE Y M, CHEN Y H. microRNAs:Emerging targets regulating oxidative stress in the models of Parkinson's disease[J]. Front Neurosci, 2016,10:298. [7] WANG K J, ZHAO X, LIU Y Z, et al. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are promising novel biomarkers for early diagnosis of acute myocardial infarction[J]. Cell Physiol Biochem, 2016, 38(3):1015-1029. [8] ZHAO X, WANG Y L, DENG R, et al. miR186 suppresses prostate cancer progression by targeting Twist1[J]. Oncotarget, 2016. 7(22):33136-33151. [9] CAI J C, WU J H, ZHANG H Z, et al. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation[J]. Cancer Res, 2013, 73(2):756-766. [10] HU X D, LIU Y F, AI P, et al. MicroRNA-186 promotes cell proliferation and inhibits cell apoptosis in cutaneous squamous cell carcinoma by targeting RETREG1[J]. Exp Ther Med, 2019, 17(3):1930-1938. [11] WU J, SONG J X, WANG C, et al. Identification of serum microRNAs for cardiovascular risk stratification in dyslipidemia subjects[J]. Int J Cardiol, 2014,172(1):232-234. [12] WANG R, BAO H, ZHANG S, et al. miR-186-5p promotes apoptosis by targeting IGF-1 in SH-SY5Y OGD/R Model[J]. Int J Biol Sci, 2018, 14(13):1791-1799. [13] WU D M, WEN X, WANG Y J, et al. Effect of microRNA-186 on oxidative stress injury of neuron by targeting interleukin 2 through the janus kinase-signal transducer and activator of transcription pathway in a rat model of Alzheimer's disease[J]. J Cell Physiol, 2018, 233(12):9488-9502. [14] KIM J, YOON H, CHUNG D E, et al. miR-186 is decreased in aged brain and suppresses BACE1 expression[J]. J Neurochem, 2016, 137(3):436-445. [15] DELAY C, DORVAL V, FOK A, et al. MicroRNAs targeting Nicastrin regulate Abeta production and are affected by target site polymorphisms[J]. Front Mol Neurosci, 2014, 7:67. [16] GIRI M, SHAH A, UPRETI B, et al. Unraveling the genes implicated in Alzheimer's disease[J]. Biomed Rep, 2017, 7(2):105-114. [17] HØGH P. Alzheimer's disease[J]. Ugeskr Laeg, 2017, 179(12):V09160686. [18] HAMANO T, HAYASHI K, SHIRAFUJI N, et al. The implications of autophagy in Alzheimer's disease[J]. Curr Alzheimer Res, 2018,15(14):1283-1296. [19] BERTRAM L, LILL C M, TANZI R E. The genetics of Alzheimer disease:back to the future[J]. Neuron, 2010,68(2):270-281. [20] KIM J, BASAK J M, HOLTMAN D M. The role of apolipoprotein E in Alzheimer's disease[J]. Neuron, 2009,63(3):287-303. [21] LUKIW W J, ANDREEVA T V, GIGORENKO A P, et al. Studying micro RNA function and dysfunction in Alzheimer's disease[J]. Front Genet, 2012, 3:327. [22] QIAN Q, ZHANG J,HE F D, et al. Down-regulated expression of microRNA-338-5p contributes to neuropathology in Alzheimer's disease[J]. FASEB J, 2019, 33(3):4404-4417. [23] Boscher E, Husson T, Quenez O, et al. Copy number variants in miR-138 as a potential risk factor for early-onset Alzheimer's disease[J]. J Alzheimers Dis, 2019,68(3):1243-1255. [24] DELAY C, CALON F, MATHEWS P, et al. Alzheimer-specific variants in the 3'UTR of Amyloid precursor protein affect microRNA function[J]. Mol Neurodegener, 2011,6:70. [25] LU Y, TAN L, WANG X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer's disease[J]. Neurosci Bull, 2019,18:1-12. [26] 赵静,杨兴武,李京涛,等.基于高通量测序的肝癌circRNA-miRNA-mRNA调控网络构建及功能富集分析[J].临床肝胆病杂志,2019,35(8):1740-1744. [27] 李琦,邹志余,杨瑞泽,等.慢病毒载体介导增强型绿色荧光蛋白筛选稳定转染的兔骨髓间充质干细胞[J].西安交通大学学报:医学版,2019,40(4):619-623. [28] NASRI M, KARIMI A, ALLAHBAKHSHIAN FARSANI M. Production, purification and titration of a lentivirus-based vector for gene delivery purposes[J]. Cytotechnology, 2014,66(6):1031-1038. |