[1] Negishi-Koga T, Takayanagi H. Bone cell communication factors and Semaphorins[J]. Bonekey Rep, 2012, 1:183. [2] Shi C, Iura A, Terajima M, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors[J]. Sci Rep, 2016, 6:24256. [3] Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci, 2012, 8(2):272-288. [4] Lin S, Svoboda KK, Feng JQ, et al. The biological function of type I receptors of bone morphogenetic protein in bone[J]. Bone Res, 2016, 4:16005. [5] Hildebrand L, Stange K, Deichsel A, et al. The fibrodysplasia ossificans progressiva (FOP) mutation p.R206H in ACVR1 confers an altered ligand response[J]. Cell Signal, 2017, 29:23-30. [6] Kamiya N, Kaartinen VM, Mishina Y. Loss-of-function of ACVR1 in osteoblasts increases bone mass and activates canonical Wnt signaling through suppression of Wnt inhibitors SOST and DKK1[J]. Biochem Biophys Res Commun, 2011, 414(2):326-330. [7] Matsuo K, Irie N. Osteoclast-osteoblast communication[J]. Arch Biochem Biophys, 2008, 473(2):201-209. [8] Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast Differentiation at a Glance[J]. Med Sci Monit Basic Res, 2016, 22:95-106. [9] Mishina Y, Snider TN. Neural crest cell signaling pathways critical to cranial bone development and pathology[J]. Exp Cell Res, 2014, 325(2):138-147. [10] Long F. Building strong bones:molecular regulation of the osteoblast lineage[J]. Nat Rev Mol Cell Biol, 2011, 13(1):27-38. [11] Haraguchi R, Kitazawa R, Mori K, et al. sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss[J]. Sci Rep, 2016, 6:25198. [12] Wu M, Chen G, Li YP. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease[J]. Bone Res, 2016, 4:16009. [13] Andrukhov O, Huber R, Shi B, et al. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness[J]. Dent Mater, 2016, 32(11):1374-1384. [14] Marino S, Logan JG, Mellis D, et al. Generation and culture of osteoclasts[J]. Bonekey Rep, 2014, 3:570. [15] Edwards JR, Mundy GR. Advances in osteoclast biology:old findings and new insights from mouse models[J]. Nat Rev Rheumatol, 2011, 7(4):235-243. [16] Dudas M, Sridurongrit S, Nagy A, et al. Craniofacial defects in mice lacking BMP type I receptor Alk2 in neural crest cells[J]. Mech Dev, 2004, 121(2):173-182. [17] Agarwal S, Loder SJ, Brownley C, et al. BMP signaling mediated by constitutively active Activin type 1 receptor (ACVR1) results in ectopic bone formation localized to distal extremity joints[J]. Dev Biol, 2015, 400(2):202-209. [18] Culbert AL, Chakkalakal SA, Theosmy EG, et al. Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification[J]. Stem Cells, 2014, 32(5):1289-1300. [19] van Dinther M, Visser N, de Gorter DJ, et al. ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation[J]. J Bone Miner Res, 2010, 25(6):1208-1215. [20] Kaplan J, Kaplan FS, Shore EM. Restoration of normal BMP signaling levels and osteogenic differentiation in FOP mesenchymal progenitor cells by mutant allele-specific targeting[J]. Gene Ther, 2012, 19(7):786-790. [21] Zhang D, Schwarz EM, Rosier RN, et al. ALK2 functions as a BMP type Ⅰ receptor and induces Indian hedgehog in chondrocytes during skeletal development[J]. J Bone Miner Res, 2003, 18(9):1593-1604. [22] Kamiya N, Ye L, Kobayashi T, et al. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway[J]. Development, 2008, 135(22):3801-3811. [23] Yano M, Kawao N, Okumoto K, et al. Fibrodysplasia ossificans progressiva-related activated activin-like kinase signaling enhances osteoclast formation during heterotopic ossification in muscle tissues[J]. J Biol Chem, 2014, 289(24):16966-16977. [24] Kawao N, Yano M, Tamura Y, et al. Role of osteoclasts in heterotopic ossification enhanced by fibrodysplasia ossificans progressiva-related activin-like kinase 2 mutation in mice[J]. J Bone Miner Metab, 2016, 34(5):517-525. [25] Rafati M, Mohamadhashem F, Hoseini A, et al. A novel ACVR1 mutation detected by whole exome sequencing in a family with an unusual skeletal dysplasia[J]. Eur J Med Genet, 2016, 59(6/7):330-336. [26] Pang J, Zuo Y, Chen Y, et al. ACVR1-Fc suppresses BMP signaling and chondro-osseous differentiation in an in vitro model of Fibrodysplasia ossificans progressiva[J]. Bone, 2016, 92:29-36. [27] Yano M, Kawao N, Tamura Y, et al. A novel factor, Tmem176b, induced by activin-like kinase 2 signal promotes the differentiation of myoblasts into osteoblasts[J]. Exp Clin Endocrinol Diabetes, 2014, 122(1):7-14. [28] Yu PB, Deng DY, Lai CS, et al. BMP type Ⅰ receptor inhibition reduces heterotopic[corrected] ossification[J]. Nat Med, 2008, 14(12):1363-1369. |