[1] Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System:a summary[J]. Acta Neuropathol, 2016,131(6):803-820. [2] Van Meir EG, Hadjipanayis CG, Norden AD, et al. Exciting new advances in neuro-oncology:the avenue to a cure for malignant glioma[J]. CA Cancer J Clin, 2010,60(3):166-193. [3] Uhm JH, Porter AB. Treatment of glioma in the 21st century:an exciting decade of postsurgical treatment advances in the molecular era[J]. Mayo Clin Proc, 2017,92(6):995-1004. [4] Lathia JD, Liu H. Overview of cancer stem cells and stemness for community oncologists[J]. Target Oncol, 2017,12(4):387-399. [5] Ryoo IG, Lee SH, Kwak MK. Redox modulating NRF2:a potential mediator of cancer stem cell resistance[J]. Oxid Med Cell Longev, 2016,2016:2428153. [6] Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature, 2004,432(7015):396-401. [7] Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma[J]. Cancer Res, 2004,64(19):7011-7021. [8] Motegi H, Kamoshima Y, Terasaka S, et al. Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells[J]. Neuropathology, 2014,34(4):378-385. [9] Roos A, Ding Z, Loftus JC, et al. Molecular and microenvironmental determinants of glioma stem-like cell survival and invasion[J]. Front Oncol, 2017,7:120. [10] Bischof J, Westhoff MA, Wagner JE, et al. Cancer stem cells:The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells[J]. Tumour Biol, 2017,39(3):1393397437. [11] Ouyang WC, Liao YW, Chen PN, et al. Hinokitiol suppresses cancer stemness and oncogenicity in glioma stem cells by Nrf2 regulation[J]. Cancer Chemother Pharmacol, 2017,80(2):411-419. [12] Venugopal C, Hallett R, Vora P, et al. Pyrvinium targets CD133 in human glioblastoma brain tumor-initiating cells[J]. Clin Cancer Res, 2015,21(23):5324-5337. [13] Jin X, Jin X, Jung JE, et al. Cell surface Nestin is a biomarker for glioma stem cells[J]. Biochem Biophys Res Commun, 2013,433(4):496-501. [14] Lamszus K, Günther HS. Glioma stem cells as a target for treatment[J]. Target Oncol, 2010,5(3):211-215. [15] Abou-Antoun TJ, Hale JS, Lathia JD, et al. Brain cancer stem cells in adults and children:cell biology and therapeutic implications[J]. Neurotherapeutics, 2017,14(2):372-384. [16] Deshmukh P, Unni S, Krishnappa G, et al. The Keap1-Nrf2 pathway:promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases[J]. Biophys Rev, 2017,9(1):41-56. [17] O'Connell MA, Hayes JD. The Keap1/Nrf2 pathway in health and disease:from the bench to the clinic[J]. Biochem Soc Trans, 2015,43(4):687-689. [18] Giudice A, Arra C, Turco MC. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents[J]. Methods Mol Biol, 2010,647:37-74. [19] Zhang M, An C, Gao Y, et al. Emerging roles of Nrf2 and phase Ⅱ antioxidant enzymes in neuroprotection[J]. Prog Neurobiol, 2013,100:30-47. [20] Shanmugam T, Selvaraj M, Poomalai S. Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats:An in-vivo and in-silico study[J]. Int Immunopharmacol, 2016,39:128-139. [21] Krajka-Kuzniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-ARE signaling pathway:An update on its regulation and possible role in cancer prevention and treatment[J]. Pharmacol Rep, 2017,69(3):393-402. [22] Yu X, Kensler T. Nrf2 as a target for cancer chemoprevention[J]. Mutat Res, 2005,591(1/2):93-102. [23] Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents[J]. Med Res Rev, 2012,32(4):687-726. [24] Kwak MK, Kensler TW. Targeting NRF2 signaling for cancer chemoprevention[J]. Toxicol Appl Pharmacol, 2010,244(1):66-76. [25] Jeddi F, Soozangar N, Sadeghi MR, et al. Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance[J]. DNA Repair (Amst), 2017,54:13-21. [26] Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer[J]. Trends Mol Med, 2016,22(7):578-593. [27] Furfaro AL, Traverso N, Domenicotti C, et al. The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance[J]. Oxid Med Cell Longev, 2016,2016:1958174. [28] Yoo NJ, Kim HR, Kim YR, et al. Somatic mutations of the KEAP1 gene in common solid cancers[J]. Histopathology, 2012,60(6):943-952. [29] Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy[J]. ISRN Oncol, 2012,2012:137289. [30] Yang W, Shen Y, Wei J, et al. MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species[J]. Oncotarget, 2015,6(26):22006-22027. [31] Chartoumpekis DV, Wakabayashi N, Kensler TW. Keap1/Nrf2 pathway in the frontiers of cancer and non-cancer cell metabolism[J]. Biochem Soc Trans, 2015,43(4):639-644. [32] Uruno A, Motohashi H. The Keap1-Nrf2 system as an in vivo sensor for electrophiles[J]. Nitric Oxide, 2011,25(2):153-160. [33] Yang H, Wang W, Zhang Y, et al. The role of NF-E2-related factor 2 in predicting chemoresistance and prognosis in advanced non-small-cell lung cancer[J]. Clin Lung Cancer, 2011,12(3):166-171. [34] Park JY, Kim YW, Park YK. Nrf2 expression is associated with poor outcome in osteosarcoma[J]. Pathology, 2012,44(7):617-621. [35] Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer[J]. Genes Dev, 2013,27(20):2179-2191. [36] Emmink BL, Verheem A, Van Houdt WJ, et al. The secretome of colon cancer stem cells contains drug-metabolizing enzymes[J]. J Proteomics, 2013,91:84-96. [37] Ryoo IG, Choi BH, Kwak MK. Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells[J]. Oncotarget, 2015,6(10):8167-8184. [38] Wu T, Harder BG, Wong PK, et al. Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy?[J]. Mol Carcinog, 2015,54(11):1494-1502. [39] Yang B, Ma YF, Liu Y. Elevated expression of Nrf-2 and ABCG2 involved in multi-drug resistance of lung cancer SP cells[J]. Drug Res (Stuttg), 2015,65(10):526-531. [40] Jia Y, Wang H, Wang Q, et al. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition[J]. Biochem Biophys Res Commun, 2016,469(3):665-671. [41] Boustani MR, Khoshnood RJ, Nikpasand F, et al. Overexpression of ubiquitin-specific protease 2a (USP2a) and nuclear factor erythroid 2-related factor 2(Nrf2) in human gliomas[J]. J Neurol Sci, 2016,363:249-252. [42] Tsai WC, Hueng DY, Lin CR, et al. Nrf2 expressions correlate with WHO grades in gliomas and meningiomas[J]. Int J Mol Sci, 2016,17(5). [43] Singer E, Judkins J, Salomonis N, et al. Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma[J]. Cell Death Dis, 2015,6:e1601. [44] Pan H, Wang H, Zhu L, et al. The involvement of Nrf2-ARE pathway in regulation of apoptosis in human glioblastoma cell U251[J]. Neurol Res, 2013,35(1):71-78. [45] Zhu J, Wang H, Fan Y, et al. Targeting the NF-E2-related factor 2 pathway:a novel strategy for glioblastoma (review)[J]. Oncol Rep, 2014,32(2):443-450. [46] Cong ZX, Wang HD, Wang JW, et al. ERK and PI3K signaling cascades induce Nrf2 activation and regulate cell viability partly through Nrf2 in human glioblastoma cells[J]. Oncol Rep, 2013,30(2):715-722. [47] Zhu J, Wang H, Fan Y, et al. Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells[J]. Oncol Rep, 2014,32(3):1170-1178. [48] Zhu J, Wang H, Sun Q, et al. Nrf2 is required to maintain the self-renewal of glioma stem cells[J]. BMC Cancer, 2013,13:380. |