[1] DENG M,MEI T,HOU T, et al.TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration[J].Stem Cell Res Ther,2017,8(1).DOI:10.1186/S13287-017-0693-0. [2] LI S,CHOW T,CHU J.Engineering microdent structures of bone implant surfaces to enhance osteogenic activity in MSCs[J].Biochem Biophys Rep,2016,10(9):100-105. [3] CHEN G,KAWAZOE N. Porous scaffolds for regeneration of cartilage, bone and osteochondral tissue[J]. Adv Exp Med Biol, 2018,1058:171-191. [4] CAPLAN AI.MSCs:The sentinel and safe-guards of injury[J].J Cell Physiol,2016,231(7):1413-1416. [5] 于祥茹,韩晓谦,袁浩天,等.PLGA/CPC支架材料复合骨髓基质干细胞构建组织工程骨的体外效果评价[J].吉林大学学报:医学版,2014,40(2):294-299. [6] KUMAR S,STOKES LⅡ J A,DEAN D,et al.Biphasic organo-bioceramic fibrous composite as a biomimetic extracellular matrix for bone tissue regeneration[J].Front Biosci (Elite Ed), 2017,9:192-203. [7] HU Y,CHEN J,FAN T,et al.Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering[J].Colloids Surf B Biointerfaces,2017,157:93-100. [8] AZEVEDO H S, PASHKULEVA I.Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration[J].Adv Drug Deliv Rev,2015,94:63-76. [9] TOPOLUK N,HAWKINS R,TOKISH J,et al. Amniotic Mesenchymal Stromal Cells Exhibit Preferential Osteogenic and Chondrogenic Differentiation and Enhanced Matrix Production Compared With Adipose Mesenchymal Stromal Cells[J]. Am J Sports Med, 2017,45(11):2637-2646. [10] 李硕峰,崔菁,刘国良,等. ECM-多糖/蛋白质多孔复合材料对BMSCs定向软骨分化的影响[J].广东医学,2018,39(8):1137-1141. [11] ALEXANDRE N,RIBEIRO J,GÄRTNER A,et al.Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting-In vitro and in vivo studies[J]. J Biomed Mater Res A,2014,102(12):4262-4275. [12] CHEN X N,GU Y X,LEE J H,et al.Multifunctional surfaces with biomimetic nanofibres and drug-eluting micro-patterns for infection control and bone tissue formation[J].Eur Cell Mater,2012,24:237-248. [13] ZHANG S,PRABHAKARAN M P,QIN X,et al.Biocomposite scaffolds for bone regeneration:Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation[J].J Mech Behav Biomed Mater,2015,51(1):88-98. [14] MVLLER W E,NEUFURTH M,WANG S,et al.Morphogenetically active scaffold for osteochondral repair(polyphosphate/alginate/N,O-carboxymethyl chitosan)[J].Eur Cell Mater,2016,31:174-190. [15] PANSERI S,RUSSO A,CUNHA C,et al. Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration[J]. Knee Surg Sports Traumatol Arthrosc,2012,20(6):1182-1191. [16] QI Y,DU Y,LI W,et al. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model[J].Knee Surg Sports Traumatol Arthrosc,2014,22(6):1424-1433. [17] TAGHIYAR L,HOSSEINI S,HESARAKI M,et al.Isolation,characterization and osteogenic potential of mouse digit tip blastema cells in comparison with bone marrow-derived mesenchymal stem cells In vitro[J].Cell J,2018,19(4):585-598. [18] SON H E,KIM E J,JANG W G.Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells[J].Life Sci,2018,15(193):34-39. [19] WU G,FENG C,QUAN J,et al.In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration[J].Carbohydr Polym,2018,15(182):215-224. [20] ZHANG Y D,ZHAO S C,ZHU Z S,et al.Cx43-and Smad-mediated TGF-β/BMP signaling pathway promotes cartilage differentiation of bone marrow mesenchymal stem cells and inhibits osteoblast differentiation[J].Cell Physiol Biochem,2017,42(4):1277-1293. |