[1] KAHLER B, KOTOUSOV A, SWAIN M V. On the design of dental resin-based composites:a micromechanical approach[J]. Acta Biomater, 2008, 4(1):165-172. [2] LIU W W, CHEN S, LIU Y R, et al. Synthesis of a liquid-crystalline resin monomer with the property of low shrinkage polymerization[J]. Dent Mater J, 2013, 32(4):550-556. [3] MOON E J, LEE J Y, KIM C K, et al. Dental restorative composites containing 2,2-bis-[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane derivatives and spiro orthocarbonates[J]. J Biomed Mater ResPart B Appl Biomater, 2005, 73(2):338-346. [4] MILOSEVIC M. Polymerization mechanics of dental composites-advantages and disadvantages[J]. Procedia Eng, 2016, 149:313-320. [5] MEEREIS C T W, MVNCHOW E A, DE OLIVEIRA DA ROSA W L O, et al. Polymerization shrinkage stress of resin-based dental materials:a systematic review and meta-analyses of composition strategies[J]. J Mech Behav Biomed Mater, 2018, 82:268-281. [6] WEIG K M, MAGALHAES FILHO T R, COSTA NETO C A, et al. Evaluation of polymerization shrinkage of dental composites by an optical method[J]. Mater Eng C Mater Biol Appl, 2015, 47:70-76. [7] HORI M, HORI T, SEKINE H, et al. Shrinkage characteristics of a novel lower contractile acrylic pattern resin[J]. Dent MaterJ,2019,38(6):900-908. [8] HABIB E, WANG R, WANG Y, et al. Inorganic fillers for dental resin composites:present and future[J]. ACS Biomater Sci Eng, 2016, 2(1):1-11. [9] LI Y C, SUN X, CHEN J H, et al. Polymerization shrinkage/stress and dentin bond strength of silorane and dimethacrylate-based dental composites[J].J Appl Polym Sci, 2012,124(1):436-443. [10] LI T, QIN H J, LIU Y, et al. Hyperbranched polyester as additives in filled and unfilled epoxy-novolac systems[J]. Polymer, 2012, 53(25):5864-5872. [11] HSU S H, CHEN R S, CHANG Y L, et al. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite[J]. Acta Biomater, 2012, 8(11):4151-4161. [12] YOO S H, PARK K, KIM J, et al. Characteristics of dental restorative composites fabricated from Bis-GMA alternatives and spiro orthocarbonates[J]. Macromol Res, 2011, 19(1):27-32. [13] ATRIA P J, SAMPAIO C S, CÁCERES E, et al. Micro-computed tomography evaluation of volumetric polymerization shrinkage and degree of conversion of composites cured by various light power outputs[J]. Dent Mater J, 2018, 37(1):33-39. [14] GAUTHIER M A, ZHANG Z, ZHU X X. New dental composites containing multimethacrylate derivatives of bile acids:a comparative study with commercial monomers[J]. ACS Appl Mater Interfaces, 2009, 1(4):824-832. [15] 贺晓萍.丙烯酸液晶树脂基质作为新型口腔修复材料的初步研究[J].生物医学工程与临床, 2017, 21(2):121-125. [16] JAYMAND M, LOTFI M, LOTFI R. Functional dendritic compounds:potential prospective candidates for dental restorative materials and in situ re-mineralization of human tooth enamel[J]. RSC Adv, 2016, 6(49):43127-43146. [17] HE J W, GAROUSHI S, SÄILYNOJA E, et al. The effect of adding a new monomer "Phene" on the polymerization shrinkage reduction of a dental resin composite[J]. Dent Mater, 2019, 35(4):627-635. [18] CUEVAS-SUAREZ C E, GONZALEZ-LOPEZ J A,DA SILVA A F, et al. Synthesis of an allyl carbonate monomer as alternative to TEGDMA in the formulation of dental composite resins[J]. J Mech Behav Biomed Mater, 2018, 87:148-154. [19] SRIVASTAVA R, WOLSKA J, WALKOWIAK KULIKOWSKA J, et al. Fluorinated bis-GMA as potential monomers for dental restorative composite materials[J].Eur Polym J, 2017, 90:334-343. [20] LIU W, FU J, WU X, et al. Influences of iodonium salts on the properties of a hybrid composite resin containing BisS-GMA and expanding monomer modified epoxy[J]. J Wuhan Univ Technol-Mater Sci Ed, 2015, 30(6):1184-1190. [21] MAIA R R, REIS R S, MORO A F V, et al. Properties evaluation of silorane, low-shrinkage, non-flowable and flowable resin-based composites in dentistry[J]. Peer J, 2015, 3:e864. [22] 周学刚.多尺度多维度填料协同增强增韧光固化树脂基口腔材料的制备及性能研究[D].北京:北京化工大学, 2014. [23] PATNANA A K, VANGA V N R, CHANDRABHATLA S K. Evaluating the marginal integrity of bulk fill fibre reinforced composites in bio-mimetically restored tooth[J]. J Clin Diagn Res, 2017, 11(6):ZC24-ZC27. [24] TEZVERGIL A, LASSILA L V J, VALLITTU P K. The effect of fiber orientation on the polymerization shrinkage strain of fiber-reinforced composites[J]. Dent Mater, 2006, 22(7):610-616. [25] GAROUSHI S, SÄILYNOJA E, VALLITTU P K, et al. Physical properties and depth of cure of a new short fiber reinforced composite[J]. Dent Mater, 2013, 29(8):835-841. [26] FRONZA B M, LEWIS S, SHAH P K,et al. Modification of filler surface treatment of composite resins using alternative silanes and functional nanogels[J]. Dent Mater, 2019, 35(6):928-936. [27] WANG X Y, CAI Q, ZHANG X H, et al. Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59:464-470. [28] WANG R L, BAO S, ZHANG M L, et al. Design and characterisation of dental resin restorative composites with Ac-Bis-GMA and bimodal silica nanostructures[J]. Mater Res Innov, 2015, 19:S230-S235. [29] NIKOLAIDIS A K, KOULAOUZIDOU E A, GOGOS C, et al. Synthesis and characterization of dental nanocomposite resins filled with different clay nanoparticles[J]. Polymers(Basel), 2019, 11(4):E730. [30] GUIMARAES G F, MARCELINO E, CESARINO I, et al. Minimization of polymerization shrinkage effects on composite resins by the control of irradiance during the photoactivation process[J]. J Appl Oral Sci, 2018, 26:e20170528. [31] MARGHALANI H Y. The influence of different light-curing modes on microleakage of posterior resin composites[J]. J Adhesion Sci Technol, 2014, 28(2), 136-150. [32] YAP A U, SOH M S, SIOW K S. Post-gel shrinkage with pulse activation and soft-start polymerization[J]. Oper Dent, 2002, 27(1):81-87. [33] DEWAELE M, ASMUSSEN E, PEUTZFELDT A, et al. Influence of curing protocol on selected properties of light-curing polymers:degree of conversion, volume contraction, elastic modulus, and glass transition temperature[J]. Dent Mater, 2009, 25(12):1576-1584. [34] ARIKAWA H, TAKAHASHI H, KANIE T, et al. Effect of various visible light photoinitiators on the polymerization and color of light-activated resins[J]. Dent Mater J, 2009, 28(4):454-460. [35] SOZZI M,CARLO FORNAINI M D, LAGORI G, et al. Dental composite polymerization:a three different sources comparison[J].Proc SPIE,2015,9306:930608. [36] DENG X L, ZHANG B W, LU P. Effect of polymerization-shrinkage of different resin composites curing by two different light curing units[J]. Shanghai J Stomatol, 2011, 20(1):31-35. [37] LOGUERCIO A D, REIS A, BALLESTER R Y. Polymerization shrinkage:effects of constraint and filling technique in composite restorations[J]. Dent Mater, 2004, 20(3):236-243. [38] CORREIA A M O, TRIBST J P M, MATOS F S, et al. Polymerization shrinkage stresses in different restorative techniques for non-carious cervical lesions[J]. J Dent, 2018, 76:68-74. [39] SANTHOSH L, BASHETTY K, NADIG G. The influence of different composite placement techniques on microleakage in preparations with high C-factor:an in vitro study[J].J Conserv Dent, 2008, 11(3):112-116. [40] HIRATA R, CLOZZA E, GIANNINI M,et al. Shrinkage assessment of low shrinkage composites using micro-computed tomography[J]. J Biomed Mater Res Part B Appl Biomater, 2015, 103(4):798-806. [41] VERSLUIS A, TANTBIROJN D, DOUGLAS W H. Do dental composites always shrink toward the light?[J].J Dent Res, 1998, 77:1435-1445. [42] BICALHO A A, DE SOUZA S J, DE ROSATTO C M P,et al. Effect of temperature and humidity on post-gel shrinkage, cusp deformation, bond strength and shrinkage stress-Construction of a chamber to simulate the oral environment[J]. Dent Mater, 2015, 31(12):1523-1532. [43] ROHR N, MVLLER J A, FISCHER J. Influence of ambient temperature and light-curing moment on polymerization shrinkage and strength of resin composite cements[J]. Oper Dent, 2018, 43(6):619-630. |