吉林大学学报(医学版) ›› 2020, Vol. 46 ›› Issue (6): 1338-1344.doi: 10.13481/j.1671-587x.20200636
• 综述 • 上一篇
收稿日期:
2020-03-29
出版日期:
2020-11-28
发布日期:
2021-01-27
通讯作者:
赵苒
E-mail:zhaoran@xmu.edu.cn
作者简介:
张 敏(1994-),女,江西省宜春市人,在读医学硕士,主要从事环境与健康方面的研究。
基金资助:
Received:
2020-03-29
Online:
2020-11-28
Published:
2021-01-27
摘要:
铬污染的治理方法主要有物理法、化学法和微生物修复法,其中物理法和化学法处理程序复杂、成本高、效率低,且效果不稳定,易引发二次污染,这2种方法在实际应用中备受限制。微生物修复技术是通过特定生物(主要是藻类、细菌和真菌等微生物)将水或土壤中的污染物降解为低毒或无毒化合物的过程,细菌和真菌等微生物可通过生物转化、生物积累和生物吸附等多种机制去除环境中的六价铬[Cr(Ⅵ)]来修复铬污染,该过程具有成本低、效率高、过程安全和不易产生二次污染等优点,是一种环境友好型的铬去除技术,可应用于持久性有机污染物与重金属所致环境污染的治理以及重金属固化、回收等工艺中。现从微生物修复环境铬污染的技术、机制、环境影响因素和环境介质等方面进行综述,并对该技术的实际应用进行展望。
中图分类号:
张敏,范春,赵苒. 微生物修复环境铬污染机制的研究进展[J]. 吉林大学学报(医学版), 2020, 46(6): 1338-1344.
表1
不同微生物及其修复Cr(Ⅵ)的机制"
Strain | Mechanism | Reference |
---|---|---|
Algae | ||
Spirulina platensis | Biosorption | FERNáNDEZ,et al.[ |
Spirulina platensis | Biosorption | FERNáNDEZ, et al.[ |
Pelvetia canaliculata | Biosorption | FERNáNDEZ,et al.[ |
Dunaliella salina | Biosorption | VIDYALAXMI,et al.[ |
Bacteria | ||
Bacillus sp. CRB-B1 | Biosorption, Biotransformation | TAN, et al.[ |
Pseudomonas aeruginosa G12 | Biotransformation | AN, et al.[ |
sp. QH-2 | Biotransformation | WANG, et al.[ |
Staphylococcusaureus K1 | Biosorption, Biotransformation | TARIQ, et al.[ |
Stenotrophomonas sp. WY601 | Biotransformation | LIU, et al.[ |
Pseudomonas sp. strain DC-B3 | Biosorption, Biotransformation | CHANG, et al.[ |
Bacillus strain TCL | Biotransformation | BANERJEE, et al.[ |
Aeromonas hydrophila | Biotransformation | SHI, et al.[ |
Sporosarcina saro mensis M52 | Biotransformation | ZHAO, et al.[ |
Fungi | ||
P. saccharolyticum LY10. | Biosorption, Bioaccumulation | LONG, et al.[ |
Papiliotrema laurentii strain RY1 | Biosorption | SARKAR, et al.[ |
Trichoderma sp. | Biosorption, Bioaccumulation | KUMAR, et al.[ |
Pisolithus sp1 | Biosorption, Bioaccumulation | SHI, et al.[ |
Aspergillus flavus CR500 | Biosorption, Biotransformation | KUMAR,et al.[ |
表2
生物吸附特征及其影响因素"
Strain | Characteristics of adsorption | Influencing factor |
---|---|---|
Dead bacteria | ①No need to add nutrients; ②Not affected by toxic substances; ③ May occur in high concentrations of Cr(Ⅵ); ④ Abscission tendency of loose adsorption. | Initial concentration of Cr(Ⅵ) , contact time, pH, biosorbent dosage, et al. |
Living bacteria | ①Mechanisms such as transportation, formation and precipitation of extracellular complexes; ②Remove Cr(Ⅵ) while growing; ③ High concentration of Cr(Ⅵ) affects growth of strains | Initial concentration of Cr(Ⅵ), contact time, pH, temperature, and environmental factors such as existence of metal ions and small molecules |
1 | SARKAR A, SAR P, ISLAM E. Hexavalent chromium reduction by microbacterium oleivorans A1: a possible mechanism of chromate -detoxification and -bioremediation[J]. Recent Pat Biotechnol, 2016, 9(2): 116-129. |
2 | 刘 靳, 涂耀仁, 蒲雅丽, 等. 重金属在黄浦江流域的污染现状与来源解析[J]. 环境科技, 2019, 32(6): 1-7. |
3 | 郑灿利, 范雪璐, 董 娴, 等. 贵阳市秋冬季PM2.5中重金属污染特征、来源解析及健康风险评估[J]. 环境科学研究, 2020, 33(6): 1376-1383. |
4 | WANG S, CAI L M, WEN H H, et al. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China[J]. Sci Total Environ, 2019, 655: 92-101. |
5 | ZHAO R, YAN S S, LIU M, et al. Seafood consumption among Chinese coastal residents and health risk assessment of heavy metals in seafood[J]. Environ Sci Pollut Res Int, 2016, 23(16): 16834-16844. |
6 | MIRETZKY P, CIRELLI A F. Cr(Ⅵ) and Cr(Ⅲ) removal from aqueous solution by raw and modified lignocellulosic materials: a review[J]. J Hazard Mater, 2010, 180(1-3): 1-19. |
7 | 蔡庆涛, 赵 苒. 十溴联苯醚微生物降解的研究进展[J]. 吉林大学学报(医学版), 2015, 41(5): 1090-1094. |
8 | ZHAO R, WANG B, CAI Q T, et al. Bioremediation of hexavalent chromium pollution by sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China[J]. Biomed Environ Sci, 2016, 29(2): 127-136. |
9 | JOUTEY N T, SAYEL H, BAHAFID W, et al. Mechanisms of hexavalent chromium resistance and removal by microorganisms[J]. Rev Environ Contam Toxicol, 2015, 233: 45-69. |
10 | GARCÍA-HERNÁNDEZ M A, VILLARREAL-CHIU J F, GARZA-GONZÁLEZ M T. Metallophilic fungi research: an alternative for its use in the bioremediation of hexavalent chromium[J]. Int J Environ Sci Technol, 2017, 14(9): 2023-2038. |
11 | JOBBY R, JHA P, YADAV A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: a comprehensive review[J]. Chemosphere, 2018, 207: 255-266. |
12 | ADHIKARI T, MANNA M C, SINGH M V, et al. Bioremediation measure to minimize heavy metals accumulation in soils and crops irrigated with city effluent[J]. J Food Agric Environ, 2015, (2): 266-270. |
13 | SHARMA M, NANDY A, TAYLOR N, et al. Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site[J]. J Hazard Mater, 2020, 389: 121845. |
14 | WU M H, LI Y Z, LI J J, et al. Bioreduction of hexavalent chromium using a novel strain CRB-7 immobilized on multiple materials[J]. J Hazard Mater, 2019, 368: 412-420. |
15 | PRADHAN D, SUKLA L B, MISHRA B B, et al. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp .[J]. J Clean Prod, 2019, 209: 617-629. |
16 | FERNÁNDEZ P M, VIÑARTA S C, BERNAL A R, et al. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives[J]. Chemosphere, 2018, 208: 139-148. |
17 | VIDYALAXMI, KAUSHIK G, RAZA K. Potential of novel Dunaliella Salina from sambhar salt lake, India, for bioremediation of hexavalent chromium from aqueous effluents: an optimized green approach[J]. Ecotoxicol Environ Saf, 2019, 180: 430-438. |
18 | TAN H, WANG C, ZENG G Q, et al. Bioreduction and biosorption of Cr(Ⅵ) by a novel Bacillus sp. CRB-B1 strain[J]. J Hazard Mater, 2020, 386: 121628. |
19 | AN Q, DENG S M, XU J, et al. Simultaneous reduction of nitrate and Cr(Ⅵ) by Pseudomonas aeruginosa strain G12 in wastewater[J]. Ecotoxicol Environ Saf, 2020, 191: 110001. |
20 | WANG C Y, CUI Y S. Recognition of a new Cr(Ⅵ)-reducing strain and study of the potential capacity for reduction of Cr(Ⅵ) of the strain[J]. Biomed Res Int, 2019, 2019: 5135017. |
21 | TARIQ M, WASEEM M, RASOOL M H, et al. Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites[J]. Peer J, 2019, 7: e7726. |
22 | LIU H J, WANG Y Q, ZHANG H, et al. Synchronous detoxification and reduction treatment of tannery sludge using Cr (Ⅵ) resistant bacterial strains[J]. Sci Total Environ, 2019, 687: 34-40. |
23 | CHANG J J, DENG S J, LIANG Y, et al. Cr(Ⅵ) removal performance from aqueous solution by Pseudomonas sp. strain DC-B3 isolated from mine soil: characterization of both Cr(VI) bioreduction and total Cr biosorption processes[J]. Environ Sci Pollut Res Int, 2019, 26(27): 28135-28145. |
24 | BANERJEE S, MISRA A, CHAUDHURY S, et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential[J]. J Hazard Mater, 2019, 367: 215-223. |
25 | SHI Z J, SHEN W J, YANG K, et al. Hexavalent chromium removal by a new composite system of dissimilatory iron reduction bacteria Aeromonas hydrophila and nanoscale zero-valent iron[J]. Chem Eng J, 2019, 362: 63-70. |
26 | LONG D Y, HASHMI M Z, SU X M, et al. Cr(Ⅵ) reduction by an extracellular polymeric substance (EPS) produced from a strain of Pseudochrobactrum saccharolyticum [J]. 3 Biotech, 2019, 9(3): 1-9. |
27 | SARKAR S, MUKHERJEE A, PARVIN R, et al. Removal of Pb (Ⅱ), As (Ⅲ), and Cr (Ⅵ) by nitrogen-starved Papiliotrema laurentii strain RY1[J]. J Basic Microbiol, 2019, 59(10): 1016-1030. |
28 | KUMAR V, DWIVEDI S K. Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater[J]. Ecotoxicol Environ Saf, 2019, 185: 109734. |
29 | SHI L, DENG X P, YANG Y, et al. A Cr(Ⅵ)-tolerant strain, Pisolithus sp1, with a high accumulation capacity of Cr in mycelium and highly efficient assisting Pinus thunbergii for phytoremediation[J]. Chemosphere, 2019, 224: 862-872. |
30 | KUMAR V, DWIVEDI S K. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater[J]. Chemosphere, 2019, 237: 124567. |
31 | 余天红, 黎华寿. 砷污染土壤微生物修复机制及其研究进展[J]. 环境污染与防治, 2014, 36(12): 77-82. |
32 | 陈 颖, 杨静翎, 凌 敏. 含铬(Cr6+)废水处理技术综述[J]. 科技与企业, 2014(22): 146. |
33 | PRATUSH A, KUMAR A, HU Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review[J]. Int Microbiol, 2018, 21(3): 97-106. |
34 | KAPOOR A, VIRARAGHAVAN T. Fungal biosorption: an alternative treatment option for heavy metal bearing wastewaters: a review[J]. Bioresour Technol, 1995, 53(3): 195-206. |
35 | AHLUWALIA S S, GOYAL D. Removal of Cr(VI) from aqueous solution by fungal biomass[J]. Eng Life Sci, 2010, 10(5): 480-485. |
36 | JAMALI N, GHADERIAN S M, KARIMI N. effects of cadmium and zinc on growth and metal accumulation of mathiola flavida boiss[J]. Environ Eng Manag J, 2014, 13(12): 2937-2944. |
37 | SATYAPAL G K, RANI S, KUMAR M, et al. Potential role of arsenic resistant bacteria in bioremediation: Current status and future prospects[J]. J Microb Biochem Technol, 2016, 8(3): 256-258. |
38 | HIMA K A, SRINIVASA R R, VIJAYA S S, et al. Biosorption: an eco-friendly alternative for heavy metal removal[J]. Afr J Biotechnol, 2007, 6(25): 2924-2931. |
39 | ZENG Q, HU Y T, YANG Y R, et al. Cell envelop is the key site for Cr(Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(Ⅵ) reducing bacterium[J]. J Hazard Mater, 2019, 368: 149-155. |
40 | HE C W, GU L P, XU Z X, et al. Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems[J]. Environ Chem Lett, 2020, 18(3): 561-576. |
41 | SANDANA MALA J G, SUJATHA D, ROSE C. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation[J]. Microbiol Res, 2015, 170: 235-241. |
42 | THATOI H, DAS S, MISHRA J, et al. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review[J]. J Environ Manage, 2014, 146: 383-399. |
43 | ROMO-RODRÍGUEZ P, ACEVEDO-AGUILAR F J, LOPEZ-TORRES A, et al. Cr(Ⅵ) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: Cooperative interaction with organic acids in the biotransformation of Cr(Ⅵ)[J]. Chemosphere, 2015, 134: 563-570. |
44 | DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review[J]. J Hazard Mater, 2013, 250: 272-291. |
45 | ACEVEDO-AGUILAR F J, ESPINO-SALDAÑA A E, LEON-RODRIGUEZ I L, et al. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of Filamentous fungi indigenous to contaminated wastes[J]. Can J Microbiol, 2006, 52(9): 809-815. |
46 | WROBEL K, CORRALES ESCOBOSA A R, GONZALEZ IBARRA A A, et al. Mechanistic insight into chromium(Ⅵ) reduction by oxalic acid in the presence of manganese(Ⅱ)[J]. J Hazard Mater, 2015, 300: 144-152. |
47 | COREÑO-ALONSO A, ACEVEDO-AGUILAR F J, REYNA-LÓPEZ G E, et al. Cr(Ⅵ) reduction by an Aspergillus tubingensis strain: role of carboxylic acids and implications for natural attenuation and biotreatment of Cr(Ⅵ) contamination[J]. Chemosphere, 2009, 76(1): 43-47. |
48 | 郭东北, 唐 晨, 张 敏, 等. 金属离子和小分子物质对耐铬(Ⅵ)菌株M52还原能力的影响[J]. 吉林大学学报(医学版), 2019, 45(5): 1003-1008. |
49 | LI H, HUANG S B, ZHANG Y Q. Cr(Ⅵ) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals[J]. J Microbiol, 2016, 54(9): 602-610. |
50 | 郝孔利, 张 杰. 细菌和真菌去除六价铬机理的研究进展[J]. 环境科技, 2018, 31(6): 66-70. |
51 | 晏晓丹, 刘卫国, 史学峰, 等. 铬污染土壤微生物修复机制及其研究进展[J]. 环境科学导刊, 2019, 38(S1): 1-6. |
[1] | 李佳瑶,李晓夏,安秋颖,范春,郭东北,唐晨,张敏,桑都哈西·歇里亚孜旦null,赵苒. 海研站菌S52菌株Cr(Ⅵ)还原酶活性和稳定性及其还原Cr(Ⅵ)的条件优化[J]. 吉林大学学报(医学版), 2021, 47(1): 44-52. |
[2] | 郭东北, 唐晨, 张敏, 范春, 岳紫钰, 李佳瑶, 陈群, 赵苒. 金属离子和小分子物质对耐铬(Ⅵ)菌株M52还原能力的影响[J]. 吉林大学学报(医学版), 2019, 45(05): 1003-1008. |
|