1 |
周学东. 牙体牙髓病学[M]. 5版. 北京: 人民卫生出版社, 2020.
|
2 |
IDON P I, SOTUNDE O A, OGUNDARE T O. Beyond the relief of pain: dentin hypersensitivity and oral health-related quality of life[J].Front Dent,2019,16(5): 325-334.
|
3 |
KIM J W, PARK J C. Dentin hypersensitivity and emerging concepts for treatments[J]. J Oral Biosci, 2017, 59(4): 211-217.
|
4 |
HENCH L L, SPLINTER R J, ALLEN W C, et al. Bonding mechanisms at the interface of ceramic prosthetic materials[J].J Biomed Mater Res,1971,5(6): 117-141.
|
5 |
NIU L N, JIAO K, WANG T D, et al. A review of the bioactivity of hydraulic calcium silicate cements[J]. J Dent, 2014, 42(5): 517-533.
|
6 |
SPAGNUOLO G. Bioactive dental materials: the current status[J]. Materials (Basel),2022,15(6): 2016.
|
7 |
SON S A, KIM D H, YOO K H, et al. Mesoporous bioactive glass combined with graphene oxide quantum dot as a new material for a new treatment option for dentin hypersensitivity[J]. Nanomaterials-Basel, 2020, 10(4): 621.
|
8 |
GALLOB J, LING M R, AMINI P, et al. Efficacy of a dissolvable strip with calcium sodium phosphosilicate (NovaMin®) in providing rapid dentine hypersensitivity relief[J]. J Dent, 2019, 91S: 100003.
|
9 |
MATSUZAKI K, SHIMADA Y, SHINNO Y, et al. Assessment of demineralization inhibition effects of dentin desensitizers using swept-source optical coherence tomography[J]. Materials (Basel), 2021, 14(8): 1876.
|
10 |
KHIJMATGAR S, REDDY U, JOHN S, et al. Is there evidence for Novamin application in remineralization?: a Systematic review[J]. J Oral Biol Craniofac Res, 2020, 10(2): 87-92.
|
11 |
MIYAJIMA H, ISHIMOTO T, MA S, et al. In vitro assessment of a calcium-fluoroaluminosilicate glass-based desensitizer for the prevention of root surface demineralization[J].Dent Mater J,2016,35(3):399-407.
|
12 |
BASTOS-BITENCOURT N, VELO M, NASCIMENTO T,et al. In vitro evaluation of desensitizing agents containing bioactive scaffolds of nanofibers on dentin remineralization[J]. Materials (Basel), 2021, 14(5): 1056.
|
13 |
CHOI Y J, BAE M K, KIM Y I, et al. Effects of microsurface structure of bioactive nanoparticles on dentinal tubules as a dentin desensitizer[J]. PLoS One, 2020, 15(8): e0237726.
|
14 |
YU J, YANG H Y, LI K, et al. Development of epigallocatechin-3-gallate-encapsulated nanohydroxyap-atite/mesoporous silica for therapeutic management of dentin surface[J]. ACS Appl Mater Interfaces, 2017, 9(31): 25796-25807.
|
15 |
TIAN L L, PENG C, SHI Y, et al. Effect of mesoporous silica nanoparticles on dentinal tubule occlusion: an in vitro study using SEM and image analysis[J]. Dent Mater J, 2014, 33(1): 125-132.
|
16 |
JUNG J H, KIM D H, YOO K H, et al. Dentin sealing and antibacterial effects of silver-doped bioactive glass/mesoporous silica nanocomposite: an in vitro study[J]. Clin Oral Investig, 2019, 23(1): 253-266.
|
17 |
JUNG J H, PARK S B, YOO K H, et al. Effect of different sizes of bioactive glass-coated mesoporous silica nanoparticles on dentinal tubule occlusion and mineralization[J]. Clin Oral Investig, 2019,23(5):2129-2141.
|
18 |
REEMA S D, LAHIRI P K, ROY S S. Review of casein phosphopeptides-amorphous calcium phosphate[J]. Chin J Dent Res, 2014, 17(1): 7-14.
|
19 |
CAO Y, MEI M L, XU J G, et al. Biomimetic mineralisation of phosphorylated dentine by CPP-ACP[J]. J Dent, 2013, 41(9): 818-825.
|
20 |
毕良佳, 李 虹, 刘来发, 等. 羟磷灰石同质间吸附效果及对牙本质小管封闭效果的研究[J]. 口腔医学研究, 2006, 22(5): 501-503.
|
21 |
YUAN P Y, SHEN X Q, LIU J, et al. Effects of dentifrice containing hydroxyapatite on dentinal tubule occlusion and aqueous hexavalent chromium cations sorption: a preliminary study[J].PLoS One,2012,7(12): e45283.
|
22 |
BESINIS A, VAN NOORT R, MARTIN N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles[J]. Dent Mater, 2012, 28(9): 1012-1023.
|
23 |
KARUMURI S, MANDAVA J, PAMIDIMUKKALA S,et al. Efficacy of hydroxyapatite and silica nanoparticles on erosive lesions remineralization[J]. J Conserv Dent, 2020, 23(3): 265-269.
|
24 |
YIN L, XU X H, CHU C, et al. In-vitro characterization and evaluation of mesoporous titanium dioxide composite hydroxyapatite and its effectiveness in occluding dentine tubules[J]. BMC Oral Health, 2022, 22(1): 43.
|
25 |
汤 皓, 朱亚文, 朱家祥, 等. 三斜磷钙石糊剂封闭牙本质小管的体外研究[J]. 华西口腔医学杂志, 2021, 39(6): 667-674.
|
26 |
LI B L, LIU C Y, FANG Z H, et al. Acidic monetite complex paste with bleaching property for in-depth occlusion of dentinal tubules[J]. Int J Nanomedicine, 2021, 16: 31-45.
|
27 |
SAURO S, LIN C Y, BIKKER F J, et al. Di-calcium phosphate and phytosphingosine as an innovative acid-resistant treatment to occlude dentine tubules[J]. Caries Res, 2016, 50(3): 303-309.
|
28 |
CAO C Y, MEI M L, LI Q L, et al. Methods for biomimetic remineralization of human dentine: a systematic review[J]. Int J Mol Sci, 2015,16(3): 4615-4627.
|
29 |
边 专. 口腔生物学[M]. 5版. 北京: 人民卫生出版社, 2019.
|
30 |
NIU L N, ZHANG W, PASHLEY D H, et al. Biomimetic remineralization of dentin[J]. Dent Mater, 2014, 30(1): 77-96.
|
31 |
PADOVANO J D, RAVINDRAN S, SNEE P T, et al. DMP1-derived peptides promote remineralization of human dentin[J]. J Dent Res, 2015, 94(4): 608-614.
|
32 |
CAO Y, LIU W, NING T Y, et al. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine[J]. Clin Oral Investig, 2014, 18(3): 873-881.
|
33 |
LING Z J, HE Y L, HUANG H W, et al. Effects of oligopeptide simulating DMP-1/mineral trioxide aggregate/agarose hydrogel biomimetic mineralisation model for the treatment of dentine hypersensitivity[J]. J Mater Chem B, 2019, 7(38): 5825-5833.
|
34 |
WANG Q Q, MIAO L Y, ZHANG H, et al. A novel amphiphilic oligopeptide induced the intrafibrillar mineralisation via interacting with collagen and minerals[J]. J Mater Chem B, 2020, 8(11): 2350-2362.
|
35 |
WANG Q Q, WANG S Q, ZHAO T, et al. Biomimetic oligopeptide formed enamel-like tissue and dentin tubule occlusion via mineralization for dentin hypersensitivity treatment[J]. J Appl Biomater Funct Mater, 2021, 19: 22808000211005384.
|
36 |
钟 秀, 赖婷婷, 陈 亮, 等. 人釉原蛋白全长及其功能片段的体外自组装和矿化行为的研究[J]. 华西口腔医学杂志, 2021, 39(4): 419-424.
|
37 |
HAN S L, FAN Y Y, ZHOU Z L, et al. Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model[J]. Arch Oral Biol, 2017, 73: 66-71.
|
38 |
DING L J, HAN S L, WANG K, et al. Remineralization of enamel caries by an amelogenin-derived peptide and fluoride in vitro [J]. Regen Biomater, 2020, 7(3): 283-292.
|
39 |
PENG X, HAN S L, WANG K, et al. The amelogenin-derived peptide TVH-19 promotes dentinal tubule occlusion and mineralization[J]. Polymers-Basel, 2021, 13(15): 2473.
|
40 |
KLAJNERT B, BRYSZEWSKA M. Dendrimers: properties and applications[J]. Acta Biochim Pol, 2001, 48(1): 199-208.
|
41 |
LIANG K N, WEIR M D, XIE X J, et al. Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite[J]. Dent Mater, 2016, 32(11): 1429-1440.
|
42 |
ZHU B G, LI X F, XU X Y, et al. One-step phosphorylated poly(amide-amine) dendrimer loaded with apigenin for simultaneous remineralization and antibacterial of dentine[J]. Colloids Surf B Biointerfaces, 2018, 172: 760-768.
|
43 |
LIN X D, XIE F F, MA X L, et al. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion[J]. J Biomater Sci Polym Ed, 2017, 28(9): 846-863.
|
44 |
YE Q, ZHOU F, LIU W M. Bioinspired catecholic chemistry for surface modification[J]. Chem Soc Rev, 2011, 40(7): 4244-4258.
|
45 |
ZHOU Y Z, CAO Y, LIU W, et al. Polydopamine-induced tooth remineralization[J]. ACS Appl Mater Interfaces, 2012, 4(12): 6901-6910.
|
46 |
FIGUEIREDO MACEDO DE LIMA J, AGUIAR JORDÃO MAINARDI M D C, PUPPIN-RONTANI R M, et al. Bioinspired catechol chemistry for dentin remineralization: a new approach for the treatment of dentin hypersensitivity[J]. Dent Mater, 2020, 36(4): 501-511.
|
47 |
QURESHI M A, et al. Different types of smart nanogel for targeted delivery[J]. J Sci Adv Mater Devices, 2019, 4(2): 201-212.
|
48 |
SONG J H, WANG H R, YANG Y Q, et al. Nanogels of carboxymethyl chitosan and lysozyme encapsulated amorphous calcium phosphate to occlude dentinal tubules[J]. J Mater Sci Mater Med, 2018, 29(6): 84.
|
49 |
GAO A T, WU Q, WANG D H,et al. A superhydrophobic surface templated by protein self-assembly and emerging application toward protein crystallization[J]. Adv Mater, 2016, 28(3): 579-587.
|
50 |
LI C, LU D Y, DENG J J, et al. Amyloid-like rapid surface modification for antifouling and in-depth remineralization of dentine tubules to treat dental hypersensitivity[J].Adv Mater,2019,31(46):e1903973.
|