1 |
MOSER B, LOETSCHER P. Lymphocyte traffic control by chemokines[J]. Nat Immunol, 2001, 2(2): 123-128.
|
2 |
BENDALL L. Chemokines and their receptors in disease[J]. Histol Histopathol, 2005, 20(3): 907-926.
|
3 |
SORCE S, MYBURGH R, KRAUSE K H. The chemokine receptor CCR5 in the central nervous system[J]. Prog Neurobiol, 2011, 93(2): 297-311.
|
4 |
TAKACS G P, FLORES-TORO J A, HARRISON J K. Modulation of the chemokine/chemokine receptor axis as a novel approach for glioma therapy[J]. Pharmacol Ther, 2021, 222: 107790.
|
5 |
XIA M Q, BACSKAI B J, KNOWLES R B, et al. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease[J]. J Neuroimmunol, 2000, 108(1/2): 227-235.
|
6 |
ZLOTNIK A, YOSHIE O. Chemokines: a new classification system and their role in immunity[J]. Immunity, 2000, 12(2): 121-127.
|
7 |
MANTOVANI A. The chemokine system: redundancy for robust outputs[J]. Immunol Today, 1999, 20(6): 254-257.
|
8 |
LU C, ZHU J, CHEN X J, et al. Risk stratification in acute myeloid leukemia using CXCR gene signatures: a bioinformatics analysis[J]. Front Oncol, 2020, 10: 584766.
|
9 |
STONE M J, HAYWARD J A, HUANG C, et al. Mechanisms of regulation of the chemokine-receptor network[J]. Int J Mol Sci, 2017, 18(2): 342.
|
10 |
ALTARA R, MANCA M, BRANDÃO R D, et al. Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases[J]. Clin Sci, 2016, 130(7): 463-478.
|
11 |
CAO F, CHEN S S, YAN X F, et al. Evaluation of side effects through selective ablation of the mu opioid receptor expressing descending nociceptive facilitatory neurons in the rostral ventromedial medulla with dermorphin-saporin[J]. Neurotoxicology, 2009, 30(6): 1096-1106.
|
12 |
赵家华, 岑雨樱, 许晓娇, 等. 1247例中枢神经系统感染性疾病的流行病学及临床特征: 一项单中心回顾性分析[J. 解放军医学杂志, 2024, 49(1): 43-49.
|
13 |
CANNON A, THOMPSON C M, BHATIA R, et al. Contribution of CXCR3-mediated signaling in the metastatic cascade of solid malignancies[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188628.
|
14 |
李 佳, 吴 珺, 杨东亮. CXCR3-CXCL9/10/11参与疾病发病机制的研究进展[J]. 中国免疫学杂志, 2020, 36(10): 1266-1270.
|
15 |
BANISADR G, ROSTÈNE W, KITABGI P, et al. Chemokines and brain functions[J]. Curr Drug Targets Inflamm Allergy, 2005, 4(3): 387-399.
|
16 |
MÜLLER M, CARTER S, HOFER M J, et al. Review: the chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity: a tale of conflict and conundrum[J]. Neuropathol Appl Neurobiol, 2010, 36(5): 368-387.
|
17 |
RAMESH G, MACLEAN A G, PHILIPP M T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain[J]. Mediators Inflamm, 2013, 2013: 480739.
|
18 |
SATARKAR D, PATRA C. Evolution expression and functional analysis of CXCR3 in neuronal and cardiovascular diseases: a narrative review[J]. Front Cell Dev Biol, 2022, 10: 882017.
|
19 |
PIOTROWSKA A, ROJEWSKA E, PAWLIK K, et al. Pharmacological blockade of CXCR3 by (±)-NBI-74330 reduces neuropathic pain and enhances opioid effectiveness-Evidence from in vivo and in vitro studies[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(10): 3418-3437.
|
20 |
OWENS T, BABCOCK A A, MILLWARD J M, et al. Cytokine and chemokine inter-regulation in the inflamed or injured CNS[J]. Brain Res Brain Res Rev, 2005, 48(2): 178-184.
|
21 |
BALASHOV K E, ROTTMAN J B, WEINER H L, et al. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions[J]. Proc Natl Acad Sci USA, 1999, 96(12): 6873-6878.
|
22 |
FIFE B T, KENNEDY K J, PANIAGUA M C, et al. CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis[J]. J Immunol, 2001, 166(12): 7617-7624.
|
23 |
SØRENSEN T L, TREBST C, KIVISÄKK P, et al. Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system[J]. J Neuroimmunol, 2002, 127(1/2): 59-68.
|
24 |
KOCH-HENRIKSEN N, SØRENSEN P S. The changing demographic pattern of multiple sclerosis epidemiology[J]. Lancet Neurol, 2010, 9(5): 520-532.
|
25 |
KAUR G, TROWSDALE J, FUGGER L. Natural killer cells and their receptors in multiple sclerosis[J]. Brain, 2013, 136(Pt 9): 2657-2676.
|
26 |
CICCARELLI O, BARKHOF F, BODINI B, et al. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging[J]. Lancet Neurol, 2014, 13(8): 807-822.
|
27 |
SØRENSEN T L, TANI M, JENSEN J, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients[J]. J Clin Invest, 1999, 103(6): 807-815.
|
28 |
LI J, SHI J Y, SUN Y, et al. Glycyrrhizin, a potential drug for autoimmune encephalomyelitis by inhibiting high-mobility group box 1[J]. DNA Cell Biol, 2018, 37(12): 941-946.
|
29 |
OMARI K M, JOHN G R, SEALFON S C, et al. CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis[J]. Brain, 2005, 128(Pt 5): 1003-1015.
|
30 |
KOHLER R E, COMERFORD I, TOWNLEY S, et al. Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis[J]. Brain Pathol, 2008, 18(4): 504-516.
|
31 |
LIU L P, HUANG D R, MATSUI M, et al. Severe disease, unaltered leukocyte migration, and reduced IFN-gamma production in CXCR3-/- mice with experimental autoimmune encephalomyelitis[J]. J Immunol, 2006, 176(7): 4399-4409.
|
32 |
MÜLLER M, CARTER S L, HOFER M J, et al. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system[J]. J Immunol, 2007, 179(5): 2774-2786.
|
33 |
MA B, KHAZALI A, WELLS A. CXCR3 in carcinoma progression[J]. Histol Histopathol, 2015, 30(7): 781-792.
|
34 |
WENNERBERG E, KREMER V, CHILDS R, et al. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo [J]. Cancer Immunol Immunother, 2015, 64(2): 225-235.
|
35 |
LI J, YBARRA R, MAK J, et al. IFNγ-induced chemokines are required for CXCR3-mediated T-cell recruitment and antitumor efficacy of anti-HER2/CD3 bispecific antibody[J]. Clin Cancer Res, 2018, 24(24): 6447-6458.
|
36 |
冯 珺, 吴昌平, 蒋敬庭. CXCR3及其配体在肿瘤中的研究进展[J]. 临床检验杂志, 2019, 37(2): 129-132.
|
37 |
冯海忠. 组蛋白修饰与胶质瘤发生发展[J]. 上海交通大学学报(医学版), 2018, 38(1): 1-3.
|
38 |
DOLECEK T A, PROPP J M, STROUP N E, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009[J]. Neuro Oncol, 2012, 14(): v1-v49.
|
39 |
PU Y, LI S W, ZHANG C B, et al. High expression of CXCR3 is an independent prognostic factor in glioblastoma patients that promotes an invasive phenotype[J]. J Neurooncol, 2015, 122(1): 43-51.
|
40 |
SHONO K, YAMAGUCHI I, MIZOBUCHI Y, et al. Downregulation of the CCL2/CCR2 and CXCL10/CXCR3 axes contributes to antitumor effects in a mouse model of malignant glioma[J]. Sci Rep, 2020, 10(1): 15286.
|
41 |
LIU C, LUO D F, REYNOLDS B A, et al. Chemokine receptor CXCR3 promotes growth of glioma[J]. Carcinogenesis, 2011, 32(2): 129-137.
|
42 |
ROMAGNANI P, LASAGNI L, ANNUNZIATO F, et al. CXC chemokines: the regulatory link between inflammation and angiogenesis[J]. Trends Immunol, 2004, 25(4): 201-209.
|
43 |
舒 凯, 雷 霆, 朱洪涛, 等. 脑胶质瘤免疫治疗进展与展望[J]. 临床外科杂志, 2022, 30(10): 917-919.
|
44 |
LIU C, CUI G H, ZHU M P, et al. Neuroinflammation in Alzheimer’s disease: chemokines produced by astrocytes and chemokine receptors[J]. Int J Clin Exp Pathol, 2014, 7(12): 8342-8355.
|
45 |
HEEMELS M T. Neurodegenerative diseases[J]. Nature, 2016, 539(7628): 179.
|
46 |
李立琳, 胡敬龙, 徐 运, 等. 小胶质细胞中的脂滴在中枢神经系统疾病中的研究进展[J]. 中风与神经疾病杂志, 2024, 41(7): 655-660.
|
47 |
KRAUTHAUSEN M, KUMMER M P, ZIMMERMANN J, et al. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer’s disease model[J]. J Clin Invest, 2015, 125(1): 365-378.
|
48 |
GILRON I, BARON R, JENSEN T. Neuropathic pain: principles of diagnosis and treatment[J]. Mayo Clin Proc, 2015, 90(4): 532-545.
|
49 |
CHEN Y L, YIN D K, FAN B B, et al. Chemokine CXCL10/CXCR3 signaling contributes to neuropathic pain in spinal cord and dorsal root Ganglia after chronic constriction injury in rats[J]. Neurosci Lett, 2019, 694: 20-28.
|
50 |
JIANG B C, HE L N, WU X B, et al. Promoted interaction of C/EBPα with demethylated CXCR3 gene promoter contributes to neuropathic pain in mice[J]. J Neurosci, 2017, 37(3): 685-700.
|
51 |
WU S F, WANG Y, ZHAO Q C. Demethylase FTO promotes neuropathic pain development via regulating the m6A methylation levels of CXCR3[J]. Acta Biochim Pol, 2022, 69(4): 819-824.
|
52 |
KONG Y F, SHA W L, WU X B, et al. CXCL10/CXCR3 signaling in the DRG exacerbates neuropathic pain in mice[J]. Neurosci Bull, 2021, 37(3): 339-352.
|
53 |
伍湘平, 张 露, 黄行行, 等. 基于FAERS数据库的羟考酮中枢神经系统不良事件信号挖掘及分析[J]. 中南大学学报(医学版), 2023, 48(3): 422-434.
|