| [1] |
POALELUNGI D G, MUSAT C L, FULGA A, et al. Advancing patient care: how artificial intelligence is transforming healthcare [J]. J Pers Med, 13(8): 1214.
|
| [2] |
LI M, LIU C, PAN X, et al. Digital twin-assisted graph matching multi-task object detection method in complex traffic scenarios [J]. Sci Rep, 2025, 15(1): 10847.
|
| [3] |
FANG M, WANG Z, PAN S, et al. Large models in medical imaging: advances and prospects [J]. Chin Med J (Engl), 2025, 138(14): 1647-1664.
|
| [4] |
GUO T Y, DENG J H, ZHOU Z M, et al. Advancements in deep learning-based image screening for orthopedic conditions: emphasis on osteoporosis, osteoarthritis, and bone tumors [J]. Ageing Res Rev, 2025, 111: 102840.
|
| [5] |
ZHU X, ZHENG B, CAI W, et al. Deep learning-based diagnosis models for onychomycosis in dermoscopy [J]. Mycoses, 2022, 65(4): 466-472.
|
| [6] |
YU Z, KAIZHI S, JIANWEN H, et al. A deep learning-based approach toward differentiating scalp psoriasis and seborrheic dermatitis from dermoscopic images[J]. Front Med (Lausanne), 2022, 9: 965423.
|
| [7] |
AEEM A, ANEES T, FIZA M, et al. SCDNet: a deep learning-based framework for the multiclassification of skin cancer using dermoscopy images [J]. Sensors (Basel), 2022, 22(15): 5652.
|
| [8] |
PHAM T C, LUONG C M, HOANG V D, et al. AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function[J]. Sci Rep, 2021, 11(1): 17485.
|
| [9] |
LEE S, CHU Y S, YOO S K, et al. Augmented decision-making for acral lentiginous melanoma detection using deep convolutional neural networks[J]. J Eur Acad Dermatol Venereol, 2020, 34(8): 1842-1850.
|
| [10] |
LAVERDE-SAAD A, JFRI A, GARCÍA R, et al. Discriminative deep learning based benignity/malignancy diagnosis of dermatologic ultrasound skin lesions with pretrained artificial intelligence architecture[J]. Skin Res Technol, 2022, 28(1): 35-39.
|
| [11] |
CZAJKOWSKA J, BADURA P, KORZEKWA S, et al. Deep learning-based high-frequency ultrasound skin image classification with multicriteria model evaluation[J]. Sensors (Basel), 2021, 21(17): 5846.
|
| [12] |
CZAJKOWSKA J, JUSZCZYK J, PIEJKO L, et al. High-frequency ultrasound dataset for deep learning-based image quality assessment[J]. Sensors (Basel), 2022, 22(4): 1478.
|
| [13] |
LEE H, LEE Y, JUNG S W, et al. Deep learning-based evaluation of ultrasound images for benign skin tumors[J]. Sensors (Basel), 2023, 23(17): 7374.
|
| [14] |
CZAJKOWSKA J, BADURA P, KORZEKWA S, et al. Deep learning approach to skin layers segmentation in inflammatory dermatoses[J]. Ultrasonics, 2021, 114: 106412.
|
| [15] |
LEE S, RAHUL, LUKAN J, et al. A deep learning model for burn depth classification using ultrasound imaging[J]. J Mech Behav Biomed Mater, 2022, 125: 104930.
|
| [16] |
DOBRE E G, SURCEL M, CONSTANTIN C, et al. Skin cancer pathobiology at a glance: a focus on imaging techniques and their potential for improved diagnosis and surveillance in clinical cohorts[J]. Int J Mol Sci, 2023, 24(2): 1079.
|
| [17] |
ALHEEJAWI S, BERENDT R, JHA N, et al. Detection of malignant melanoma in H&E-stained images using deep learning techniques[J]. Tissue Cell, 2021, 73: 101659.
|
| [18] |
ZHAO B, CHEN X, LI Z, et al. Triple U-net: hematoxylin-aware nuclei segmentation with progressive dense feature aggregation[J]. Med Image Anal, 2020, 65: 101786.
|
| [19] |
WANG C, MA Q, WEI Y, et al. Deep learning automatically assesses 2-µm laser-induced skin damage OCT images[J]. Lasers Med Sci, 2024, 39(1): 106.
|
| [20] |
GROH M, BADRI O, DANESHJOU R, et al. Deep learning-aided decision support for diagnosis of skin disease across skin tones[J]. Nat Med, 2024, 30(2): 573-583.
|
| [21] |
MAHBOD A, SCHAEFER G, WANG C, et al. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification[J]. Comput Methods Programs Biomed, 2020, 193: 105475.
|
| [22] |
TANG P, YAN X, NAN Y, et al. FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classification[J]. Med Image Anal, 2022, 76: 102307.
|
| [23] |
WANG Y, FENG Y, ZHANG L, et al. Adversarial multimodal fusion with attention mechanism for skin lesion classification using clinical and dermoscopic images[J]. Med Image Anal, 2022, 81: 102535.
|
| [24] |
LEE K, CAVALCANTI T C, KIM S, et al. Multi-task and few-shot learning-based fully automatic deep learning platform for mobile diagnosis of skin diseases[J]. IEEE J Biomed Health Inform, 2023, 27(1): 176-187.
|
| [25] |
ALDHYANI T H H, VERMA A, AL-ADHAILEH M H, et al. Multi-class skin lesion classification using a lightweight dynamic kernel deep-learning-based convolutional neural network[J]. Diagnostics (Basel), 2022, 12(9): 2048.
|
| [26] |
RAGHAVENDRA P V S P, CHARITHA C, BEGUM K G, et al. Deep learning-based skin lesion multi-class classification with global average pooling improvement[J]. J Digit Imaging, 2023, 36(5): 2227-2248.
|
| [27] |
PACHECO A G C, KROHLING R A. An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification [J]. IEEE J Biomed Health Inform, 2021, 25(9): 3554-3563.
|
| [28] |
THIEME A H, ZHENG Y, MACHIRAJU G, et al. A deep-learning algorithm to classify skin lesions from mpox virus infection[J]. Nat Med, 2023, 29(3): 738-747.
|
| [29] |
NINGRUM D N A, YUAN S P, KUNG W M, et al. Deep learning classifier with patient’s metadata of dermoscopic images in malignant melanoma detection[J]. J Multidiscip Healthc, 2021, 14: 877-885.
|
| [30] |
PACHECO A G C, KROHLING R A. The impact of patient clinical information on automated skin cancer detection[J]. Comput Biol Med, 2020, 116: 103545.
|
| [31] |
CAI G, ZHU Y, WU Y, et al. A multimodal transformer to fuse images and metadata for skin disease classification[J]. Vis Comput, 2023, 39(7):2781-93.
|
| [32] |
COMBALIA M, CODELLA N, ROTEMBERG V, et al. Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge[J]. Lancet Digit Health, 2022, 4(5): e330-e339.
|
| [33] |
AGHAMOHAMMADESMAEILKETABFOROOSH K, PARFITT J, NIKAN S, et al. From blender to farm: transforming controlled environment agriculture with synthetic data and SwinUNet for precision crop monitoring [J]. PLoS One, 2025, 20(4): e0322189.
|
| [34] |
FUJISAWA Y, OTOMO Y, OGATA Y, et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis [J]. Br J Dermatol, 2019, 180(2): 373-381.
|
| [35] |
ALAM T M, SHAUKAT K, KHAN W A, et al. An efficient deep learning-based skin cancer classifier for an imbalanced dataset[J]. Diagnostics (Basel), 2022, 12(9): 2115.
|
| [36] |
ZHU A Q, WANG Q, SHI Y L, et al.; China Alliance of Multi-Center Clinical Study for Ultrasound (Ultra-Chance). A deep learning fusion network trained with clinical and high-frequency ultrasound images in the multi-classification of skin diseases in comparison with dermatologists: a prospective and multicenter study [J]. EClinicalMedicine, 2024, 67: 102391.
|
| [37] |
XIN C, LIU Z, ZHAO K, et al. An improved transformer network for skin cancer classification[J]. Comput Biol Med, 2022, 149: 105939.
|
| [38] |
THOMAS S M, LEFEVRE J G, BAXTER G, et al. Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer[J]. Med Image Anal, 2021, 68: 101915.
|
| [39] |
LUCIERI A, BAJWA M N, BRAUN S A, et al. ExAID: A multimodal explanation framework for computer-aided diagnosis of skin lesions[J]. Comput Methods Programs Biomed, 2022, 215: 106620.
|
| [40] |
RASHEED A, UMAR A I, SHIRAZI S H, et al. Automatic eczema classification in clinical images based on hybrid deep neural network[J]. Comput Biol Med, 2022, 147: 105807.
|
| [41] |
HAMMAD M, PŁAWIAK P, ELAFFENDI M, et al. Enhanced deep learning approach for accurate eczema and psoriasis skin detection [J]. Sensors (Basel), 2023, 23(16): 7295.
|
| [42] |
FOLLE L, FENZL P, FAGNI F, et al. DeepNAPSI multi-reader nail psoriasis prediction using deep learning[J]. Sci Rep, 2023, 13(1): 5329.
|
| [43] |
YANG Y, GUO L, WU Q, et al. Construction and evaluation of a deep learning model for assessing acne vulgaris using clinical images[J]. Dermatol Ther (Heidelb), 2021, 11(4): 1239-1248.
|
| [44] |
GUO L, YANG Y, DING H, et al. A deep learning-based hybrid artificial intelligence model for the detection and severity assessment of vitiligo lesions[J]. Ann Transl Med, 2022, 10(10): 590.
|
| [45] |
ZHENG X, HUANG Y, LIU W, et al. LW-XNet for segmentation and classification of skin lesions from dermoscopy images[J]. Expert Syst Appl, 2024, 255: 124826.
|
| [46] |
WANG L, SHAO A, HUANG F, et al. Deep learning-based semantic segmentation of non-melanocytic skin tumors in whole-slide histopathological images[J]. Exp Dermatol, 2023, 32(6): 831-839.
|
| [47] |
DE LOGU F, UGOLINI F, MAIO V, et al. Recognition of cutaneous melanoma on digitized histopathological slides via artificial intelligence algorithm[J]. Front Oncol, 2020, 10: 1559.
|
| [48] |
AGGARWAL P, PAPAY F A. Artificial intelligence image recognition of melanoma and basal cell carcinoma in racially diverse populations[J]. J Dermatolog Treat, 2022, 33(4): 2257-2262.
|
| [49] |
PHAM T C, LUONG C M, HOANG V D, et al. AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function[J]. Sci Rep, 2021, 11(1): 17485.
|
| [50] |
KIM R H, NOMIKOU S, COUDRAY N, et al. Deep learning and pathomics analyses reveal cell nuclei as important features for mutation prediction of BRAF-mutated melanomas[J]. J Invest Dermatol, 2022, 142(6): 1650-1658.
|
| [51] |
HEKLER A, UTIKAL J S, ENK A H, et al. Pathologist-level classification of histopathological melanoma images with deep neural networks[J]. Eur J Cancer, 2019, 115: 79-83.
|
| [52] |
THOMSEN K, CHRISTENSEN A L, IVERSEN L, et al. Deep learning for diagnostic binary classification of multiple-lesion skin diseases [J]. Front Med (Lausanne), 2020, 7: 574329
|
| [53] |
LIU Y, JAIN A, ENG C, et al. A deep learning system for differential diagnosis of skin diseases [J]. Nat Med, 2020, 26(6): 900-908.
|