吉林大学学报(医学版) ›› 2025, Vol. 51 ›› Issue (6): 1755-1762.doi: 10.13481/j.1671-587X.20250633

• 综述 • 上一篇    

皮肤病深度学习诊断模型的研究进展

丛玉佳1,刘冰2,苗百卉1,丛宪玲3(),姜日花1()   

  1. 1.吉林大学中日联谊医院皮肤性病科,吉林 长春 130033
    2.吉林大学中日联谊医院病理科,吉林 长春 130033
    3.吉林大学中日联谊医院生物样本库,吉林 长春 130033
  • 收稿日期:2025-01-13 接受日期:2025-02-21 出版日期:2025-11-28 发布日期:2025-12-15
  • 通讯作者: 丛宪玲,姜日花 E-mail:congxl@jlu.edu.cn;jiangrh@jlu.edu.cn
  • 作者简介:丛玉佳(2000-),女,吉林省榆树市人,在读硕士研究生,主要从事皮肤性病学疾病与人工智能诊断交叉融合方面的研究。
  • 基金资助:
    吉林省科技厅技术创新引导国际科技合作项目(20240402002GH);吉林省卫生健康科技能力提升计划项目(202WS-YA010)

Research progress in deep learning-based diagnostic models for dermatological diseases

Yujia CONG1,Bing LIU2,Baihui MIAO1,Xianling CONG3(),Rihua JIANG1()   

  1. 1.Department of Dermatology,China-Japan Union Hospital,Jilin University,Changchun 130033,China
    2.Department of Pathology,China-Japan Union Hospital,Jilin University,Changchun 130033,China
    3.Department of Biobank,China-Japan Union Hospital,Jilin University,Changchun 130033,China
  • Received:2025-01-13 Accepted:2025-02-21 Online:2025-11-28 Published:2025-12-15
  • Contact: Xianling CONG,Rihua JIANG E-mail:congxl@jlu.edu.cn;jiangrh@jlu.edu.cn

摘要:

皮肤病严重影响全球约1.9亿患者的生活质量,其疾病表现的复杂性和多样性是传统诊疗模式面临的挑战,探索新型的诊断手段已经成为当前亟待解决的关键任务。深度学习(DL)技术在皮肤病智能识别领域已逐渐广泛应用,并显示出巨大的潜力。本文从三大维度系统综述了DL在皮肤病诊断中的研究进展。首先,在数据输入层面,重点分析皮肤镜图像、超声影像及病理切片图像多模态数据的特征提取与预处理方法。其次,在算法模型层面,深入探讨集成学习框架、多模态数据融合策略、多中心数据集协同训练方法及可解释性模型构建方案。最后,在任务识别层面,评估DL模型在良性皮肤病筛查、恶性皮肤病鉴别以及二分类与多分类诊断任务中的性能表现。通过多角度评述皮肤病DL诊断模型的研究为未来模型的进一步优化与应用提供参考。

关键词: 深度学习, 皮肤病, 数据输入, 智能识别, 皮肤镜图像, 超声影像

Abstract:

Skin diseases significantly affect the quality of life of approximately 190 million individuals worldwide. The complexity and diversity of their clinical manifestations are the major challenges for traditional diagnostic approaches, and exploring novel diagnostic strategies has become an urgent priority. In recent years, deep learning (DL) technology has been increasingly applied in the intelligent recognition of skin diseases, demonstrating substantial potential. This study provides a systematic review of the research progress of DL in dermatological diagnosis from three major dimensions. First, at the data input level, it focuses on the characterization and preprocessing of multimodal data, including dermoscopic images, ultrasound images, and histopathological slides. Second, at the algorithmic model level, it explores ensemble learning frameworks, multimodal data fusion strategies, multicenter collaborative training approaches, and interpretable model construction. Finally, at the task recognition level, it evaluates the performance of DL models in benign skin disease screening, malignant skin lesion differentiation, and binary as well as multiclass classification tasks. By comprehensively reviewing advancements in DL-based skin disease diagnostic models from multiple perspectives, this paper aims to provide valuable insights for the further optimization and clinical translation of intelligent diagnostic systems.

Key words: Deep learning, Skin diseases, Input data, Intelligent identification, Dermoscopic images, Ultrasound images

中图分类号: 

  • R751