[1] DE LUCA F. Regulatory role for growth hormone in statural growth:IGF-dependent and IGF-independent effects on growth plate chondrogenesis and longitudinal bone growth[J]. Pediatr Endocrinol Rev, 2018,16(Suppl 1):33-38. [2] 李松.下颌髁状突软骨与生长板软骨生长发育的比较研究[J].昆明医科大学学报,2014,35(2):1-4. [3] BONAFE L, CORMIER-DAIRE V, HALL C, et al. Nosology and classification of genetic skeletal disorders:2015 revision[J]. Am J Med Genet A, 2015,167A(12):2869-2892. [4] GARRISON P, YUE SN, HANSON J, et al. Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage[J]. PLoS One, 2017,12(5):e0176752. [5] AICHER S, KAKKANAS A, COHEN L, et al. Differential regulation of the Wnt/β-catenin pathway by hepatitis C virus recombinants expressing core from various genotypes[J]. Sci Rep, 2018,8(1):11185. [6] KIMURA T, OZAKI T, FUJITA K, et al. Proposal of patient-specific growth plate cartilage xenograft model for FGFR3 chondrodysplasia[J]. Osteoarthr Cartilage, 2018,26(11):1551-1561. [7] HARAGUCHI R, KITAZAWA R, IMAI Y, et al. Growth plate-derived hedgehog-signal-responsive cells provide skeletal tissue components in growing bone[J]. Histochem Cell Biol, 2018,149(4):365-373. [8] ZHENG YX, LIU CC, NI L, et al. Cell type-specific effects of Notch signaling activation on intervertebral discs:Implications for intervertebral disc degeneration[J]. J Cell Physiol, 2018,233(7):5431-5440. [9] 徐真然,罗飞宏.生长板的局部调控新进展[J].医学综述,2018, 24(19):3772-3776. [10] SHI C, IURA A, TERAJIMA M, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors[J]. Sci Rep, 2016,6:24256. [11] SAMSA WE, ZHOU X, ZHOU G. Signaling pathways regulating cartilage growth plate formation and activity[J]. Semin Cell Dev Biol, 2017,62:3-15. [12] LEFEBVRE V, DVIR-GINZBERG M. SOX9 and the many facets of its regulation in the chondrocyte lineage[J]. Connect Tissue Res, 2017,58(1):2-14. [13] HISCOCK T W, TSCHOPP P, TABIN C J. On the formation of digits and joints during limb development[J]. Dev Cell, 2017,41(5):459-465. [14] VAN DINTHER M, VISSER N, DE GORTER DJ, et al. ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type Ⅰ receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation[J]. J Bone Miner Res, 2010,25(6):1208-1215. [15] RIGUEUR D, BRUGGER S, ANBARCHIAN T, et al. The type Ⅰ BMP receptor ACVR1/ALK2 is required for chondrogenesis during development[J]. J Bone Miner Res, 2015,30(4):733-741. [16] YOON BS, OVCHINNIKOV DA, YOSHⅡ I, et al. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo[J]. Proc Natl Acad Sci U S A, 2005,102(14):5062-5067. [17] RETTING K N, SONG B, YOON B S, et al. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation[J]. Development, 2009,136(7):1093-1104. [18] ZHANG H, BRADLEY A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development[J]. Development, 1996,122(10):2977-2986. [19] SHU B, ZHANG M, XIE R, et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development[J]. J Cell Sci, 2011,124(Pt 20):3428-3440. [20] ESTRADA K D, WANG W G, RETTING K N, et al. Smad7 regulates terminal maturation of chondrocytes in the growth plate[J]. Dev Biol, 2013,382(2):375-384. [21] ESTRADA K D, RETTING K N, CHIN A M, et al. Smad6 is essential to limit BMP signaling during cartilage development[J]. J Bone Miner Res, 2011,26(10):2498-2510. [22] GAO L, SHEU T J, DONG YF, et al. TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages[J]. J Cell Sci, 2013,126(Pt 24):5704-5713. [23] KAWANO Y, KYPTA R. Secreted antagonists of the Wnt signalling pathway[J]. J Cell Sci, 2003,116(Pt 13):2627-2634. [24] BHATTARAM P, PENZO-MÉNDEZ A, KATO K, et al. SOXC proteins amplify canonical WNT signaling to secure nonchondrocytic fates in skeletogenesis[J]. J Cell Biol, 2014,207(5):657-671. [25] AKIYAMA H, LYONS J P, MORI-AKIYAMA Y, et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation[J]. Genes Dev, 2004,18(9):1072-1087. [26] CHAO B N, BALDWIN W H, HEALEY J F, et al. Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene[J]. J Thromb Haemost, 2016,14(2):346-355. [27] ZHU M, CHEN M, ZUSCIK M, et al. Inhibition of beta-catenin signaling in articular chondrocytes results in articular cartilage destruction[J]. Arthritis Rheum, 2008,58(7):2053-2064. [28] HUNG I H, SCHOENWOLF G C, LEWANDOSKI M, et al. A combined series of Fgf9 and Fgf18 mutant alleles identifies unique and redundant roles in skeletal development[J]. Dev Biol, 2016,411(1):72-84. [29] ORNITZ D M, MARIE P J. Fibroblast growth factor signaling in skeletal development and disease[J]. Genes Dev, 2015,29(14):1463-1486. [30] KARUPPAIAH K, YU K, LIM J, et al. FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth[J]. Development, 2016,143(10):1811-1822. [31] MATSUSHITA T, CHAN Y Y, KAWANAMI A, et al. Extracellular signal-regulated kinase 1(ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis[J]. Mol Cell Biol, 2009,29(21):5843-5857. [32] LIU ES, RAIMANN A, CHAE BT, et al. c-Raf promotes angiogenesis during normal growth plate maturation[J]. Development, 2016,143(2):348-355. [33] LEE R T, ZHAO Z, INGHAM P W. Hedgehog signalling[J]. Development, 2016,143(3):367-372. [34] CHIANG C, LITINGTUNG Y, LEE E, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function[J]. Nature, 1996,383(6599):407-413. [35] AMANO K, DENSMORE M J, LANSKE B. Conditional deletion of Indian Hedgehog in limb mesenchyme results in complete loss of growth plate formation but allows mature osteoblast differentiation[J]. J Bone Miner Res, 2015,30(12):2262-2272. [36] ENGIN F, LEE B. NOTCHing the bone:insights into multi-functionality[J]. Bone, 2010,46(2):274-280. [37] WANG C C, INZANA J A, MIRANDO A J, et al. NOTCH signaling in skeletal progenitors is critical for fracture repair[J]. J Clin Invest, 2016,126(4):1471-1481. [38] CHEN S, TAO J N, BAE Y J, et al. Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9[J]. J Bone Miner Res, 2013,28(3):649-659. [39] KOHN A, RUTKOWSKI T P, LIU Z Y, et al. Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9[J]. Bone Res, 2015,3:15021. [40] RUTKOWSKI T P, KOHN A, SHARMA D, et al. HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development[J]. J Cell Sci, 2016,129(11):2145-2155. [41] VORTKAMP A, LEE K, LANSKE B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein[J]. Science, 1996,273(5275):613-622. [42] CUNNINGHAM T J, DUESTER G. Mechanisms of retinoic acid signalling and its roles in organ and limb development[J]. Nat Rev Mol Cell Biol, 2015,16(2):110-123. [43] YAN B, ZHANG Z M, JIN D D, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation[J]. Nat Commun, 2016,7:11151. [44] MURRAY P G, HANSON D, COULSON T, et al. 3-M syndrome:a growth disorder associated with IGF2 silencing[J]. Endocr Connect, 2013,2(4):225-235. [45] REALE M E, WEBB I C, WANG X, et al. The transcription factor Runx2 is under circadian control in the suprachiasmatic nucleus and functions in the control of rhythmic behavior[J]. PLoS One, 2013,8(1):e54317. |